Advertisement

Cardiovascular Engineering and Technology

, Volume 9, Issue 4, pp 752–760 | Cite as

Coronary Stent Fracture: Clinical Evidence Vs. the Testing Paradigm

  • Claire Conway
Article
  • 53 Downloads

Abstract

Purpose

The United States’ Food and Drug Administration (FDA) recommends that device manufacturers demonstrate 10 years of equivalent life duration for endovascular stents. Yet since the early 2000s clinical evidence of stent strut fracture defies the recommendations for these FDA approved devices. Stent strut fracture has been correlated with a higher incidence of adverse clinical events, such as in-stent thrombosis and in-stent restenosis.

Methods

This paper reviews the current clinical evidence, computational modelling relating to fatigue lifetimes, experimental testing of coronary stents, and the related regulatory guidance and standards.

Results

The scale of stent fracture is evident from the clinical data reviewed. In terms of model setups, either physical or computational the loadings, in particular, dictate the durability response.

Conclusions

The full scale of stent fracture is most likely under-reported and its assessment is dependent on detection time and detection resolution. Within the event of SF it is not necessarily consequential; further research is warranted to distinguish when the event negatively impacts the patient.

Keywords

Stent fracture Computational fatigue Durability testing Clinical data 

Notes

Conflict of interest

Conway declares that she has no conflict of interest to report.

References

  1. 1.
    Adlakha, S., M. Sheikh, J. Wu, M. W. Burket, U. Pandya, W. Colyer, E. Eltahawy, and C. J. Cooper. Stent fracture in the coronary and peripheral arteries. J. Interv. Cardiol. 23:411–419, 2010.  https://doi.org/10.1111/j.1540-8183.2010.00567.x.CrossRefGoogle Scholar
  2. 2.
    AL-Mangour, B., R. Mongrain, and S. Yue. Coronary stents fracture: an engineering approach. Mater. Sci. Appl. 4:606, 2013.  https://doi.org/10.4236/msa.2013.410075.Google Scholar
  3. 3.
    Aoki, J., G. Nakazawa, K. Tanabe, A. Hoye, H. Yamamoto, T. Nakayama, Y. Onuma, Y. Higashikuni, S. Otsuki, A. Yagishita, S. Yachi, H. Nakajima, and K. Hara. Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation. Catheter Cardiovasc. Interv. 69:380–386, 2007.  https://doi.org/10.1002/ccd.20950.CrossRefGoogle Scholar
  4. 4.
    Argente dos Santos, H. A. F., F. Auricchio, and M. Conti. Fatigue life assessment of cardiovascular balloon-expandable stents: a two-scale plasticity–damage model approach. J. Mech. Behav. Biomed. Mater. 15:78–92, 2012.  https://doi.org/10.1016/j.jmbbm.2012.06.011.CrossRefGoogle Scholar
  5. 5.
    ASTM. ASTM F2477 Standard Test Methods for in vitro Pulsatile Durability Testing of Vascular Stents, 2013.Google Scholar
  6. 6.
    ASTM. Standard guide for in vitro axial, bending, and torsional durability testing of ASTM I, 2014.  https://doi.org/10.1520/f2942-13.2.
  7. 7.
    Azaouzi, M., A. Makradi, J. Petit, S. Belouettar, and O. Polit. On the numerical investigation of cardiovascular balloon-expandable stent using finite element method. Comput. Mater. Sci. 79:326–335, 2013.  https://doi.org/10.1016/j.commatsci.2013.05.043.CrossRefGoogle Scholar
  8. 8.
    Barrera, O., A. Makradi, M. Abbadi, M. Azaouzi, and S. Belouettar. On high-cycle fatigue of 316L stents. Comput. Methods Biomech. Biomed. Eng. 17:239–250, 2014.  https://doi.org/10.1080/10255842.2012.677442.CrossRefGoogle Scholar
  9. 9.
    Benjamin, E. J., M. J. Blaha, S. E. Chiuve, M. Cushman, S. R. Das, R. Deo, S. D. de Ferranti, J. Floyd, M. Fornage, C. Gillespie, C. R. Isasi, M. C. Jiménez, L. C. Jordan, S. E. Judd, D. Lackland, J. H. Lichtman, L. Lisabeth, S. Liu, C. T. Longenecker, R. H. Mackey, K. Matsushita, D. Mozaffarian, M. E. Mussolino, K. Nasir, R. W. Neumar, L. Palaniappan, D. K. Pandey, R. R. Thiagarajan, M. J. Reeves, M. Ritchey, C. J. Rodriguez, G. A. Roth, W. D. Rosamond, C. Sasson, A. Towfighi, C. W. Tsao, M. B. Turner, S. S. Virani, J. H. Voeks, J. Z. Willey, J. T. Wilkins, J. H. Y. Wu, H. M. Alger, S. S. Wong, and P. Muntner. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 135:e146–e603, 2017.  https://doi.org/10.1161/CIR.0000000000000485.CrossRefGoogle Scholar
  10. 10.
    Bennett, J., M. Vanhaverbeke, N. Vanden Driessche, N. Hiltrop, T. Adriaenssens, W. Desmet, P. Sinnaeve, and C. Dubois. The drug-eluting resorbable magnesium vascular scaffold in complex coronary bifurcations: insights from an in vivo multimodality imaging study. EuroIntervention 13:2036–2046, 2018.  https://doi.org/10.4244/EIJ-D-17-00248.CrossRefGoogle Scholar
  11. 11.
    Chakravarty, T., A. J. White, M. Buch, H. Naik, N. Doctor, J. Schapira, S. Kar, J. S. Forrester, R. E. Weiss, and R. Makkar. Meta-analysis of incidence, clinical characteristics and implications of stent fracture. Am. J. Cardiol. 106:1075–1080, 2010.  https://doi.org/10.1016/j.amjcard.2010.06.010.CrossRefGoogle Scholar
  12. 12.
    Chinikar, M., and P. Sadeghipour. Coronary stent fracture: a recently appreciated phenomenon with clinical relevance. Curr Cardiol Rev 10:349–354, 2014.  https://doi.org/10.2174/1573403X10666140404105923.CrossRefGoogle Scholar
  13. 13.
    Chung, W.-S., C.-S. Park, K.-B. Seung, P.-J. Kim, J.-M. Lee, B.-K. Koo, Y.-S. Jang, J.-Y. Yang, J.-H. Yoon, D.-I. Kim, Y.-W. Yoon, J.-S. Park, Y.-H. Cho, and S.-J. Park. The incidence and clinical impact of stent strut fractures developed after drug-eluting stent implantation. Int. J. Cardiol. 125:325–331, 2008.  https://doi.org/10.1016/j.ijcard.2007.02.033.CrossRefGoogle Scholar
  14. 14.
    Conway, C., G. J. Desany, L. R. Bailey, J. H. Keating, B. L. Baker, and E. R. Edelman. Fracture in drug-eluting stents increases focal intimal hyperplasia in the atherosclerosed rabbit iliac artery. Catheter Cardiovasc. Interv. 2018.  https://doi.org/10.1002/ccd.27726.Google Scholar
  15. 15.
    Cutlip, D. E., D. S. Baim, K. K. Ho, J. J. Popma, A. J. Lansky, D. J. Cohen, J. P. Carrozza, M. S. Chauhan, O. Rodriguez, and R. E. Kuntz. Stent thrombosis in the modern era: a pooled analysis of multicenter coronary stent clinical trials. Circulation 103:1967–1971, 2001.  https://doi.org/10.1161/01.CIR.103.15.1967.CrossRefGoogle Scholar
  16. 16.
    Doi, H., A. Maehara, G. S. Mintz, K. Tsujita, T. Kubo, C. Castellanos, J. Liu, J. Yang, C. Oviedo, J. Aoki, T. Franklin-Bond, N. Dasgupta, A. J. Lansky, G. D. Dangas, G. W. Stone, J. W. Moses, R. Mehran, and M. B. Leon. Classification and potential mechanisms of intravascular ultrasound patterns of stent fracture. Am. J. Cardiol. 103:818–823, 2009.  https://doi.org/10.1016/j.amjcard.2008.11.051.CrossRefGoogle Scholar
  17. 17.
    Donnelly, E., F. M. Weafer, T. Connolley, P. E. McHugh, and M. S. Bruzzi. Experimental investigation into the size effect on the microscale fatigue behaviour of 316L stainless steel. Int. J. Fatigue 95:1–7, 2017.  https://doi.org/10.1016/j.ijfatigue.2016.10.007.CrossRefGoogle Scholar
  18. 18.
    Everett, K. D., C. Conway, G. J. Desany, B. L. Baker, G. Choi, C. A. Taylor, and E. R. Edelman. Structural mechanics predictions relating to clinical coronary stent fracture in a 5 year period in FDA MAUDE database. Ann. Biomed. Eng. 44:391–403, 2016.  https://doi.org/10.1007/s10439-015-1476-3.CrossRefGoogle Scholar
  19. 19.
    FDA. Non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems, 2010.Google Scholar
  20. 20.
    FDA. Select updates for non-clinical engineering tests and recommended labeling for intravascular stents and associated delivery systems, 2015.Google Scholar
  21. 21.
    Halkin, A., S. Carlier, and M. B. Leon. Late incomplete lesion coverage following Cypher stent deployment for diffuse right coronary artery stenosis. Heart 90:e45, 2004.  https://doi.org/10.1136/hrt.2004.034538.CrossRefGoogle Scholar
  22. 22.
    Halwani, D. O., P. G. Anderson, B. C. Brott, A. S. Anayiotos, and J. E. Lemons. The role of vascular calcification in inducing fatigue and fracture of coronary stents. J. Biomed. Mater. Res. Part B Appl. Biomater. 100B:292–304, 2012.  https://doi.org/10.1002/jbm.b.31911.CrossRefGoogle Scholar
  23. 23.
    Hao, P., M. Enoki, and K. Sakurai. Finite Element Analysis of Tensile Fatigue Behavior of Coronary Stent. Mater. Trans. 5:959–962, 2012.CrossRefGoogle Scholar
  24. 24.
    Hecht, H. S., S. Polena, V. Jelnin, M. Jimenez, T. Bhatti, M. Parikh, G. Panagopoulos, and G. Roubin. Stent gap by 64-detector computed tomographic angiography relationship to in-stent restenosis, fracture, and overlap failure. J. Am. Coll. Cardiol. 54:1949–1959, 2009.  https://doi.org/10.1016/j.jacc.2009.06.045.CrossRefGoogle Scholar
  25. 25.
    ISO. ISO 25539 cardiovascular implants–endovascular devices–part 2: vascular stents, 2012, pp. 1–105Google Scholar
  26. 26.
    Kajiya, T., M. Liang, R. K. Sharma, C.-H. Lee, M. Y. Chan, E. Tay, K.-H. Chan, H.-C. Tan, and A. F. Low. Everolimus-eluting bioresorbable vascular scaffold (BVS) implantation in patients with ST-segment elevation myocardial infarction (STEMI). EuroIntervention 9:501–504, 2013.  https://doi.org/10.4244/EIJV9I4A80.CrossRefGoogle Scholar
  27. 27.
    Kang, W. Y., W. Kim, H. G. Kim, and W. Kim. Drug-eluting stent fracture occurred within 2 days after stent implantation. Int. J. Cardiol. 120:273–275, 2007.  https://doi.org/10.1016/j.ijcard.2006.07.192.CrossRefGoogle Scholar
  28. 28.
    Kapnisis, K., G. Constantinides, H. Georgiou, D. Cristea, C. Gabor, D. Munteanu, B. Brott, P. Anderson, J. Lemons, and A. Anayiotos. Multi-scale mechanical investigation of stainless steel and cobalt–chromium stents. J. Mech. Behav. Biomed. Mater. 40:240–251, 2014.  https://doi.org/10.1016/j.jmbbm.2014.09.010.CrossRefGoogle Scholar
  29. 29.
    Kapnisis, K. K., D. O. Halwani, B. C. Brott, P. G. Anderson, J. E. Lemons, and A. S. Anayiotos. Stent overlapping and geometric curvature influence the structural integrity and surface characteristics of coronary nitinol stents. J. Mech. Behav. Biomed. Mater. 20:227–236, 2013.  https://doi.org/10.1016/j.jmbbm.2012.11.006.CrossRefGoogle Scholar
  30. 30.
    Karanasiou, G. S., M. I. Papafaklis, C. Conway, L. K. Michalis, R. Tzafriri, E. R. Edelman, and D. I. Fotiadis. Stents: biomechanics, biomaterials, and insights from computational modeling. Ann. Biomed. Eng. 45:853–872, 2017.  https://doi.org/10.1007/s10439-017-1806-8.CrossRefGoogle Scholar
  31. 31.
    Kim, E. J., S.-W. Rha, S. P. Wani, S. Y. Suh, C. U. Choi, J. W. Kim, C. G. Park, H. S. Seo, and D. J. Oh. Coronary stent fracture and restenosis in the drug-eluting stent era: do we have clues of management? Int. J. Cardiol. 120:417–419, 2007.  https://doi.org/10.1016/j.ijcard.2006.08.019.CrossRefGoogle Scholar
  32. 32.
    Kuramitsu, S., M. Iwabuchi, T. Haraguchi, T. Domei, A. Nagae, M. Hyodo, K. Yamaji, Y. Soga, T. Arita, S. Shirai, K. Kondo, K. Ando, K. Sakai, M. Goya, Y. Takabatake, S. Sonoda, H. Yokoi, F. Toyota, H. Nosaka, and M. Nobuyoshi. Incidence and clinical impact of stent fracture after everolimus-eluting stent implantation. Circ. Cardiovasc. Interv. 5:663–671, 2012.  https://doi.org/10.1161/CIRCINTERVENTIONS.112.969238.CrossRefGoogle Scholar
  33. 33.
    Lee, M. S., D. Jurewitz, J. Aragon, J. Forrester, R. R. Makkar, and S. Kar. Stent fracture associated with drug-eluting stents: clinical characteristics and implications. Catheter Cardiovasc. Interv. 69:387–394, 2007.  https://doi.org/10.1002/ccd.20942.CrossRefGoogle Scholar
  34. 34.
    Lee, S.-H., J.-S. Park, D.-G. Shin, Y.-J. Kim, G.-R. Hong, W. Kim, and B.-S. Shim. Frequency of stent fracture as a cause of coronary restenosis after sirolimus-eluting stent implantation. Am. J. Cardiol. 100:627–630, 2007.  https://doi.org/10.1016/j.amjcard.2007.03.073.CrossRefGoogle Scholar
  35. 35.
    Lemos, P. A., F. Saia, J. M. R. Ligthart, C. A. Arampatzis, G. Sianos, K. Tanabe, A. Hoye, M. Degertekin, J. Daemen, E. McFadden, S. Hofma, P. C. Smits, P. de Feyter, W. J. van der Giessen, R. T. van Domburg, and P. W. Serruys. Coronary restenosis after sirolimus-eluting stent implantation. Circulation 108:257–260, 2003.  https://doi.org/10.1161/01.CIR.0000083366.33686.11.CrossRefGoogle Scholar
  36. 36.
    Li, J., Q. Luo, Z. Xie, Y. Li, and Y. Zeng. Fatigue life analysis and experimental verification of coronary stent. Heart Vessel. 25:333–337, 2010.  https://doi.org/10.1007/s00380-009-1203-9.CrossRefGoogle Scholar
  37. 37.
    Lim, D., S.-K. Cho, W.-P. Park, A. Kristensson, J.-Y. Ko, S. Al-Hassani, and H.-S. Kim. Suggestion of potential stent design parameters to reduce restenosis risk driven by foreshortening or dogboning due to non-uniform balloon-stent expansion. Ann. Biomed. Eng. 36:1118–1129, 2008.  https://doi.org/10.1007/s10439-008-9504-1.CrossRefGoogle Scholar
  38. 38.
    Lim, H. B., G. Hur, S. Y. Kim, Y. H. Kim, S. U. Kwon, W. R. Lee, and S. J. Cha. Coronary stent fracture: detection with 64-section multidetector CT angiography in patients and in vitro. Radiology 249:810–819, 2008.  https://doi.org/10.1148/radiol.2493088035.CrossRefGoogle Scholar
  39. 39.
    Liu, K. C. A method based on virtual strain-energy parameters for multiaxial fatigue life prediction. In: Advances in multiaxial fatigue, edited by D. L. McDowell, and R. Ellis. Philadelphia: ASTM International, 1993, pp. 120–130.Google Scholar
  40. 40.
    Lu, H., R. J. De Winter, and K. T. Koch. The STENTYS self-apposing stent technology in coronary artery disease: literature review and future directions. Expert Rev. Med. Dev. 15:479–487, 2018.  https://doi.org/10.1080/17434440.2018.1491305.CrossRefGoogle Scholar
  41. 41.
    Makaryus, A., L. Lefkowitz, and A. Lee. Coronary artery stent fracture. Int. J. Cardiovasc. Imaging 23:305–309, 2007.  https://doi.org/10.1007/s10554-006-9151-2.CrossRefGoogle Scholar
  42. 42.
    Marrey, R. V., R. Burgermeister, R. B. Grishaber, and R. O. Ritchie. Fatigue and life prediction for cobalt-chromium stents: a fracture mechanics analysis. Biomaterials 27:1988–2000, 2006.  https://doi.org/10.1016/j.biomaterials.2005.10.012.CrossRefGoogle Scholar
  43. 43.
    Min, P.-K., Y.-W. Yoon, and H. Moon Kwon. Delayed strut fracture of sirolimus-eluting stent: a significant problem or an occasional observation? Int. J. Cardiol. 106:404–406, 2006.  https://doi.org/10.1016/j.ijcard.2004.12.087.CrossRefGoogle Scholar
  44. 44.
    Mohsen, M. K., A. Alqahtani, and J. Al Suwaidi. Stent fracture: how frequently is it recognized? Heart Views 14:72–81, 2013.  https://doi.org/10.4103/1995-705X.115501.CrossRefGoogle Scholar
  45. 45.
    Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 47:899–907, 2014.  https://doi.org/10.1016/j.jbiomech.2014.01.007.CrossRefGoogle Scholar
  46. 46.
    Nakazawa, G., A. V. Finn, M. Vorpahl, E. Ladich, R. Kutys, I. Balazs, F. D. Kolodgie, and R. Virmani. Incidence and predictors of drug-eluting stent fracture in human coronary artery. A pathologic analysis. J. Am. Coll. Cardiol. 54:1924–1931, 2009.  https://doi.org/10.1016/j.jacc.2009.05.075.CrossRefGoogle Scholar
  47. 47.
    Okumura, M., Y. Ozaki, J. Ishii, S. Kan, H. Naruse, S. Matsui, M. Ishikawa, K. Hattori, T. Gochi, T. Nakano, A. Yamada, S. Kato, S. Motoyama, M. Sarai, Y. Takagi, T. F. Ismail, M. Nomura, and H. Hishida. Restenosis and stent fracture following sirolimus-eluting stent (SES) implantation. Circ. J. Off. J. Jpn. Circ. Soc. 71:1669–1677, 2007.Google Scholar
  48. 48.
    Onuma, Y., P. W. Serruys, T. Muramatsu, S. Nakatani, R.-J. van Geuns, B. de Bruyne, D. Dudek, E. Christiansen, P. C. Smits, B. Chevalier, D. McClean, J. Koolen, S. Windecker, R. Whitbourn, I. Meredith, H. M. Garcia-Garcia, S. Veldhof, R. Rapoza, and J. A. Ormiston. Incidence and imaging outcomes of acute scaffold disruption and late structural discontinuity after implantation of the absorb everolimus-eluting fully bioresorbable vascular scaffold: optical coherence tomography assessment in the ABSORB Cohort B Trial. JACC Cardiovasc. Interv. 7:1400–1411, 2014.  https://doi.org/10.1016/j.jcin.2014.06.016.CrossRefGoogle Scholar
  49. 49.
    Ormiston, J. A., B. Webber, B. Ubod, J. White, and M. W. I. Webster. Coronary stent durability and fracture: an independent bench comparison of six contemporary designs using a repetitive bend test. EuroIntervention 10:1449–1455, 2015.  https://doi.org/10.4244/EIJY14M11_08.CrossRefGoogle Scholar
  50. 50.
    Paris, P., and F. Erdogan. A critical analysis of crack propagation laws. J. Basic Eng. 85:528–533, 1963.  https://doi.org/10.1115/1.3656900.CrossRefGoogle Scholar
  51. 51.
    Park, J.-S., I.-H. Cho, and Y.-J. Kim. Stent fracture and restenosis after zotarolimus-eluting stent implantation. Int. J. Cardiol. 147:e29–e31, 2011.  https://doi.org/10.1016/j.ijcard.2009.01.030.CrossRefGoogle Scholar
  52. 52.
    Popma, J. J., K. Tiroch, A. Almonacid, S. Cohen, D. E. Kandzari, and M. B. Leon. A qualitative and quantitative angiographic analysis of stent fracture late following sirolimus-eluting stent implantation. Am. J. Cardiol. 103:923–929, 2009.  https://doi.org/10.1016/j.amjcard.2008.12.022.CrossRefGoogle Scholar
  53. 53.
    Puricel, S., F. Cuculi, M. Weissner, A. Schmermund, P. Jamshidi, T. Nyffenegger, H. Binder, H. Eggebrecht, T. Münzel, S. Cook, and T. Gori. Bioresorbable coronary scaffold thrombosis. J. Am. Coll. Cardiol. 67:921–931, 2016.  https://doi.org/10.1016/j.jacc.2015.12.019.CrossRefGoogle Scholar
  54. 54.
    Shaikh, F., R. Maddikunta, M. Djelmami-Hani, J. Solis, S. Allaqaband, and T. Bajwa. Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis? Catheter Cardiovasc. Interv. 71:614–618, 2008.  https://doi.org/10.1002/ccd.21371.CrossRefGoogle Scholar
  55. 55.
    Sianos, G., S. Hofma, J. M. R. Ligthart, F. Saia, A. Hoye, P. A. Lemos, and P. W. Serruys. Stent fracture and restenosis in the drug-eluting stent era. Catheter Cardiovasc. Interv. 61:111–116, 2004.  https://doi.org/10.1002/ccd.10709.CrossRefGoogle Scholar
  56. 56.
    Sweeney, C. A., P. E. McHugh, J. P. McGarry, and S. B. Leen. Micromechanical methodology for fatigue in cardiovascular stents. Int. J. Fatigue 44:202–216, 2012.  https://doi.org/10.1016/j.ijfatigue.2012.04.022.CrossRefGoogle Scholar
  57. 57.
    Sweeney, C. A., B. O’Brien, F. P. E. Dunne, P. E. McHugh, and S. B. Leen. Micro-scale testing and micromechanical modelling for high cycle fatigue of CoCr stent material. J. Mech. Behav. Biomed. Mater. 46:244–260, 2015.  https://doi.org/10.1016/j.jmbbm.2015.02.011.CrossRefGoogle Scholar
  58. 58.
    Sweeney, C. A., B. O’Brien, P. E. McHugh, and S. B. Leen. Experimental characterisation for micromechanical modelling of CoCr stent fatigue. Biomaterials 35:36–48, 2014.  https://doi.org/10.1016/j.biomaterials.2013.09.087.CrossRefGoogle Scholar
  59. 59.
    Umeda, H., T. Gochi, M. Iwase, H. Izawa, T. Shimizu, R. Ishiki, H. Inagaki, J. Toyama, M. Yokota, and T. Murohara. Frequency, predictors and outcome of stent fracture after sirolimus-eluting stent implantation. Int. J. Cardiol. 133:321–326, 2009.  https://doi.org/10.1016/j.ijcard.2007.12.067.CrossRefGoogle Scholar
  60. 60.
    Waksman, R., R. Pakala, R. Baffour, R. Seabron, D. Hellinga, and F. O. Tio. Short-term effects of biocorrodible iron stents in porcine coronary arteries. J. Interv. Cardiol. 21:15–20, 2008.  https://doi.org/10.1111/j.1540-8183.2007.00319.x.CrossRefGoogle Scholar
  61. 61.
    Wang, P.-J., N. Ferralis, C. Conway, J. C. Grossman, and E. R. Edelman. Strain-induced accelerated asymmetric spatial degradation of polymeric vascular scaffolds. Proc. Natl. Acad. Sci. USA 115:2640–2645, 2018.  https://doi.org/10.1073/pnas.1716420115.CrossRefGoogle Scholar
  62. 62.
    Wiktor, D. M., S. W. Waldo, and E. J. Armstrong. Coronary stent failure: fracture, compression, recoil, and prolapse. Interv. Cardiol. Clin. 5:405–414, 2016.  https://doi.org/10.1016/J.ICCL.2016.03.004.Google Scholar
  63. 63.
    Wu, M.-C., C.-C. Cheng, and T.-Y. Huang. Fracture of zotarolimus-eluting stent after implantation. Texas Hear. Inst. J. 36:618–620, 2009.Google Scholar
  64. 64.
    Yagi, S., T. Kimura, I. Hayashi, and T. Nishiuchi. Acute coronary syndrome due to hinge movement of a bare-metal stent. Int. J. Cardiol. 123:e64–e66, 2008.  https://doi.org/10.1016/j.ijcard.2007.01.002.CrossRefGoogle Scholar
  65. 65.
    Yamada, K. P., T. Koizumi, H. Yamaguchi, H. Kaneda, H. N. Bonneau, Y. Honda, and P. J. Fitzgerald. Serial angiographic and intravascular ultrasound analysis of late stent strut fracture of sirolimus-eluting stents in native coronary arteries. Int. J. Cardiol. 130:255–259, 2008.  https://doi.org/10.1016/j.ijcard.2007.08.082.CrossRefGoogle Scholar
  66. 66.
    Yang, T.-H., D.-I. Kim, S.-G. Park, J.-S. Seo, H.-J. Cho, S.-H. Seol, S.-M. Kim, D.-K. Kim, and D.-S. Kim. Clinical characteristics of stent fracture after sirolimus-eluting stent implantation. Int. J. Cardiol. 131:212–216, 2009.  https://doi.org/10.1016/j.ijcard.2007.10.059.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Biomechanics Research Centre (BioMEC), Biomedical Engineering, College of Engineering and InformaticsNational University of Ireland GalwayGalwayIreland

Personalised recommendations