Cardiovascular Engineering and Technology

, Volume 9, Issue 4, pp 674–687 | Cite as

In Vitro Validation of 4D Flow MRI for Local Pulse Wave Velocity Estimation

  • Timothy RuesinkEmail author
  • Rafael Medero
  • David Rutkowski
  • Alejandro Roldán-Alzate



Arterial stiffness has predictive value for cardiovascular disease (CVD). Local artery stiffness can provide insight on CVD pathology and may be useful for diagnosis and prognosis. However, current methods are invasive, require real-time expertise for measurement, or are limited by arterial region. 4D Flow MRI can non-invasively measure local stiffness by estimating local pulse wave velocity (PWV). This technique can be applied to vascular regions, previously accessible only by invasive stiffness measurement methods. MRI PWV data can also be analyzed post-exam. However, 4D Flow MRI requires validation before it is used in vivo to measure local PWV.


PWV, calculated from 4D Flow MRI and a benchtop experiment, was compared with petersons elastic modulus (PEM) of in vitro models. PEM was calculated using high-speed camera images and pressure transducers. Three transit-time algorithms were analyzed for PWV measurement accuracy and precision.


PWV from 4D Flow MRI and reference benchtop experiments show strong correlation with PEM (R2 = 0.99). The cross correlation transit-time algorithm showed the lowest percent difference between 4D Flow MRI and benchtop experiments (4–7%), and the point to point of 50% upstroke algorithm had the highest transit-time vs. distance data average R2 (0.845).


4D Flow MRI is a feasible method for estimating local PWV in simple in vitro models and is a viable tool for clinical analysis. In addition, choice in transit-time algorithm depends on flow waveform shape and arterial region. This study strengthens the validity of 4D Flow MRI local PWV measurement in simple models. However, this technique requires validation in more complex models before it is used in vivo.


Local pulse wave velocity 4D FLOW MRI Arterial stiffness Validation 


Conflict of interest

Timothy Ruesink, David Rutkowski, Rafael Medero and Alejandro Roldán-Alzate declare that they have no conflict of interest.

Research Involving Human and Animal Participants

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Supplementary material

13239_2018_377_MOESM1_ESM.xlsx (114 kb)
Supplementary material 1 (XLSX 114 kb)
13239_2018_377_MOESM2_ESM.xlsx (33.5 mb)
Supplementary material 2 (XLSX 34345 kb)
13239_2018_377_MOESM3_ESM.docx (14 kb)
Supplementary material 3 (DOCX 13 kb)
13239_2018_377_MOESM4_ESM.avi (14 mb)
Supplementary material 4 (AVI 14308 kb)


  1. 1.
    Blacher, J., A. P. Guerin, B. Pannier, S. J. Marchais, M. E. Safar, and G. M. London. Impact of aortic stiffness on survival in end-stage renal disease. Circulation. 99(18):2434–2439, 1999.CrossRefGoogle Scholar
  2. 2.
    Bolster, B. D., E. Atalar, C. J. Hardy, and E. R. McVeigh. Accuracy of arterial pulse-wave velocity measurement using MR. J. Magn. Reson. Imaging. 8:878–888, 1998.CrossRefGoogle Scholar
  3. 3.
    Boutouyrie, P., M. Briet, C. Collin, S. Vermeersch, and B. Pannier. Assessment of pulse wave velocity. Artery Res. 3:3–8, 2009.CrossRefGoogle Scholar
  4. 4.
    Boutouyrie, P., D. Fliser, D. Goldsmith, A. Covic, A. Wiecek, A. Ortiz, et al. Assessment of arterial stiffness for clinical and epidemiological studies: methodological considerations for validation and entry into the European Renal and Cardiovascular Medicine registry. Nephrol. Dial. Transplant. 29:232–239, 2014.CrossRefGoogle Scholar
  5. 5.
    Boutouyrie, P., A. I. Tropeano, R. Asmar, I. Gautier, A. Benetos, P. Lacolley, et al. Aortic stiffness is an independent predictor of primary coronary events in hypertensive patients: a longitudinal study. Hypertension. 39:10–15, 2002.CrossRefGoogle Scholar
  6. 6.
    Chiu, Y. C., P. W. Arand, S. G. Shroff, T. Feldman, and J. D. Carroll. Determination of pulse wave velocities with computerized algorithms. Am. Heart J. 121:1460–1470, 1991.CrossRefGoogle Scholar
  7. 7.
    Cruickshank, K., L. Riste, S. G. Anderson, J. S. Wright, G. Dunn, and R. G. Gosling. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 106:2085–2090, 2002.CrossRefGoogle Scholar
  8. 8.
    Dogui, A., N. Kachenoura, F. Frouin, M. Lefort, A. De Cesare, E. Mousseaux, et al. Consistency of aortic distensibility and pulse wave velocity estimates with respect to the Bramwell-Hill theoretical model: a cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 13(1):11, 2011.CrossRefGoogle Scholar
  9. 9.
    Dogui, A., A. Redheuil, M. Lefort, A. Decesare, N. Kachenoura, A. Herment, et al. Measurement of aortic arch pulse wave velocity in cardiovascular MR: comparison of transit time estimators and description of a new approach. J. Magn. Reson. Imaging. 33:1321–1329, 2011.CrossRefGoogle Scholar
  10. 10.
    Gu, T., F. R. Korosec, W. F. Block, S. B. Fain, Q. Turk, D. Lum, et al. PC VIPR: a high-speed 3D phase-contrast method for flow quantification and high-resolution angiography. Am. J. Neuroradiol. 26:743–749, 2005.Google Scholar
  11. 11.
    Hermeling, E., K. D. Reesink, R. S. Reneman, and A. P. G. Hoeks. Measurement of local pulse wave velocity: effects of signal processing on precision. Ultrasound Med. Biol. 33:774–781, 2007.CrossRefGoogle Scholar
  12. 12.
    Johnson, K. M., D. P. Lum, P. A. Turski, W. F. Block, C. A. Mistretta, and O. Wieben. Improved 3D phase contrast MRI with off-resonance corrected dual echo VIPR. Magn. Reson. Med. 60:1329–1336, 2008.CrossRefGoogle Scholar
  13. 13.
    Laurent, S., J. Cockcroft, L. Van Bortel, P. Boutouyrie, C. Giannattasio, D. Hayoz, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur. Heart J. 27:2588–2605, 2006.CrossRefGoogle Scholar
  14. 14.
    Laurent, S., S. Katsahian, C. Fassot, A. I. Tropeano, I. Gautier, B. Laloux, et al. Aortic stiffness is an independent predictor of fatal stroke in essential hypertension. Stroke. 34:1203–1206, 2003.CrossRefGoogle Scholar
  15. 15.
    London, G. M., and M. E. Safar. Arterial wall remodelling and stiffness in hypertension: heterogeneous aspects. Clin. Exp. Pharmacol. Physiol. 23:S1–S5, 1996.CrossRefGoogle Scholar
  16. 16.
    Lozano, R., M. Naghavi, K. Foreman, S. Lim, K. Shibuya, V. Aboyans, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380:2095–2128, 2012.CrossRefGoogle Scholar
  17. 17.
    Markl, M., W. Wallis, S. Brendecke, J. Simon, A. Frydrychowicz, and A. Harloff. Estimation of global aortic pulse wave velocity by flow-sensitive 4D MRI. Magn. Reson. Med. 63:1575–1582, 2010.CrossRefGoogle Scholar
  18. 18.
    Markl, M., W. Wallis, C. Strecker, B. P. Gladstone, W. Vach, and A. Harloff. Analysis of pulse wave velocity in the thoracic aorta by flow-sensitive four-dimensional MRI: reproducibility and correlation with characteristics in patients with aortic atherosclerosis. J. Magn. Reson. Imaging. 35:1162–1168, 2012.CrossRefGoogle Scholar
  19. 19.
    Mattace-Raso, F. U. S., T. J. M. Van Der Cammen, A. Hofman, N. M. Van Popele, M. L. Bos, M. A. D. H. Schalekamp, et al. Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 113:657–663, 2006.CrossRefGoogle Scholar
  20. 20.
    Meinders, J. M., L. Kornet, P. J. Brands, and A. P. Hoeks. Assessment of local pulse wave velocity in arteries using 2D distension waveforms. Ultrason. Imaging. 23:199–215, 2001.CrossRefGoogle Scholar
  21. 21.
    Millasseau, S. C., A. D. Stewart, S. J. Patel, S. R. Redwood, and P. J. Chowienczyk. Evaluation of carotid-femoral pulse wave velocity: influence of timing algorithm and heart rate. Hypertension. 45:222–226, 2005.CrossRefGoogle Scholar
  22. 22.
    Mitchell, G. F., S.-J. Hwang, R. S. Vasan, M. G. Larson, M. J. Pencina, N. M. Hamburg, et al. Arterial stiffness and cardiovascular events: the framingham heart study. Circulation. 121:505–511, 2010.CrossRefGoogle Scholar
  23. 23.
    Nichols, W. W., and D. A. McDonald. Wave-velocity in the proximal aorta. Med. Biol. Eng. 10:327–335, 1972.CrossRefGoogle Scholar
  24. 24.
    Nichols, W., and B. Singh. Augmentation index as a measure of peripheral vascular disease state. Curr. Opin. Cardiol. 17:543–551, 2002.CrossRefGoogle Scholar
  25. 25.
    Papageorgiou, G. L., and N. B. Jones. Physical modelling of the arterial wall. Part 1: testing of tubes of various materials. J. Biomed. Eng. 9:153–156, 1987.CrossRefGoogle Scholar
  26. 26.
    Peterson, L. H., R. E. Jensen, and J. Parnell. Mechanical properties of arteries in vivo. Circ. Res. 8:622–639, 1960.CrossRefGoogle Scholar
  27. 27.
    Quinaglia, T., M. Z. Bensalah, E. Bollache, N. Kachenoura, G. Soulat, P. Boutouyrie, et al. Differential impact of local and regional aortic stiffness on left ventricular remodeling. J. Hypertens. 36:1, 2018.CrossRefGoogle Scholar
  28. 28.
    Swillens, A., L. Taelman, J. Degroote, J. Vierendeels, and P. Segers. Comparison of non-invasive methods for measurement of local pulse wave velocity using fsi-simulations and in vivo data. Ann. Biomed. Eng. 41:1567–1578, 2013.CrossRefGoogle Scholar
  29. 29.
    Taviani, V., A. J. Patterson, M. J. Graves, C. J. Hardy, P. Worters, M. P. F. Sutcliffe, et al. Accuracy and repeatability of fourier velocity encoded M-mode and two-dimensional cine phase contrast for pulse wave velocity measurement in the descending aorta. J. Magn. Reson. Imaging. 31:1185–1194, 2010.CrossRefGoogle Scholar
  30. 30.
    Tijsseling, A., and A. A. Anderson. Isebree Moens and DJ Korteweg: On the Speed of Propagation of Waves in Elastic Tubes. BHR Gr: Conf Press Surges, pp. 1–19, 2012.Google Scholar
  31. 31.
    Van Bortel, L. M., D. Duprez, M. J. Starmans-Kool, M. E. Safar, C. Giannattasio, J. Cockcroft, et al. Clinical applications of arterial stiffness, task force III: recommendations for user procedures. Am. J. Hypertens. 15:445–452, 2002.CrossRefGoogle Scholar
  32. 32.
    Van Sloten, T. T., M. T. Schram, K. Van Den Hurk, J. M. Dekker, G. Nijpels, R. M. A. Henry, et al. Local stiffness of the carotid and femoral artery is associated with incident cardiovascular events and all-cause mortality: the hoorn study. J. Am. Coll. Cardiol. 63:1739–1747, 2014.CrossRefGoogle Scholar
  33. 33.
    Walker, P. G., G. B. Cranney, M. B. Scheidegger, G. Waseleski, G. M. Pohost, and A. P. Yoganathan. Semiautomated method for noise reduction and background phase error correction in MR phase velocity data. J. Magn. Reson. Imaging. 3:521–530, 1993.CrossRefGoogle Scholar
  34. 34.
    Wang, Z., Y. Yang, L. J. Yuan, J. Liu, Y. Y. Duan, and T. S. Cao. Noninvasive method for measuring local pulse wave velocity by dual pulse wave Doppler: in vitro and in vivo studies. PLoS ONE. 10:1–13, 2015.Google Scholar
  35. 35.
    Wentland, A. L., T. M. Grist, and O. Wieben. Review of MRI-based measurements of pulse wave velocity: a biomarker of arterial stiffness. Cardiovasc. Diagn. Ther. 4:193–206, 2014.Google Scholar
  36. 36.
    Wentland, A. L., O. Wieben, C. J. François, C. Boncyk, A. Munoz Del Rio, K. M. Johnson, et al. Aortic pulse wave velocity measurements with undersampled 4D flow-sensitive MRI: comparison with 2D and algorithm determination. J. Magn. Reson. Imaging. 37:853–859, 2013.CrossRefGoogle Scholar
  37. 37.
    Westenberg, J. J. M., E. P. Van Poelgeest, P. Steendijk, H. B. Grotenhuis, J. W. Jukema, and A. De Roos. Bramwell-Hill modeling for local aortic pulse wave velocity estimation: a validation study with velocity-encoded cardiovascular magnetic resonance and invasive pressure assessment. J. Cardiovasc. Magn. Reson. 14:2, 2012.CrossRefGoogle Scholar
  38. 38.
    World Health Organization. Cardiovascular diseases [Internet]. 2017 [cited 2018 Mar 4]. p. 1–6.
  39. 39.
    Yang, E. Y., L. Chambless, A. R. Sharrett, S. S. Virani, X. Liu, Z. Tang, et al. Carotid arterial wall characteristics are associated with incident ischemic stroke but not coronary heart disease in the Atherosclerosis Risk in Communities (ARIC) Study. Stroke. 43:103–108, 2012.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  • Timothy Ruesink
    • 1
    Email author
  • Rafael Medero
    • 1
  • David Rutkowski
    • 1
  • Alejandro Roldán-Alzate
    • 1
    • 2
    • 3
  1. 1.Department of Mechanical EngineeringUniversity of Wisconsin - MadisonMadisonUSA
  2. 2.Department of RadiologyUniversity of Wisconsin - MadisonMadisonUSA
  3. 3.Department of Biomedical EngineeringUniversity of Wisconsin - MadisonMadisonUSA

Personalised recommendations