Advertisement

Cardiovascular Engineering and Technology

, Volume 9, Issue 4, pp 723–738 | Cite as

Study on the Accuracy of Structural and FSI Heart Valves Simulations

  • Giulia Luraghi
  • Francesco Migliavacca
  • Josè Fèlix Rodriguez Matas
Article
  • 140 Downloads

Abstract

Purpose

The performance of heart valves, either native or artificial, can be evaluated by means of finite element analyses, either from a structural or a fluid–structure interaction (FSI) point of view. The latter captures the coupling between the valve leaflets and the blood in a more realistic way. The selection of the appropriate finite elements approach for the model is the first and fundamental step to achieve accurate simulations. The aim of this work is to investigate the influence of the type, formulation, size, and shape of the elements in heart valves simulations.

Methods

The effects related to the choice of the finite elements-shell or solid- in structural and FSI simulations were analyzed. In particular, the analysis of grid convergence on both the structure and fluid domains, the influence of the element typology, formulation and damping factor in an idealized three-leaflets valve model loaded with physiological pressure conditions were investigated.

Results

Stress values and valve kinematics results confirmed the importance of performing a proper verification process for selecting the most appropriate elements with the optimal accuracy to computational cost ratio.

Conclusion

In this regard, our results indicate the quadrangular shell with reduced integration and viscous hourglass control to be the best choice to model heart valves. If a solid discretization is required, quadratic hexahedral elements with full integration are also acceptable. Finally, our results show that the damping coefficient needs to be carefully selected in order to smooth out the high frequency modes of the structure without introducing excessive numerical artificial viscosity.

Keywords

Fluid–structure interaction (FSI) Verification Finite element analysis Heart valve Cardiovascular mechanics 

Notes

Acknowledgments

The authors thank Prof. Ethan Kung and Rithwik Jallepalli for the thoroughly reading of the manuscript and their valuable suggestions.

Conflict of interest

Author Luraghi, Author Migliavacca, and Author Rodriguez Matas declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Abbasi, M., and A. N. Azadani. Leaflet stress and strain distributions following incomplete transcatheter aortic valve expansion. J. Biomech. 48:3663–3671, 2015.CrossRefGoogle Scholar
  2. 2.
    American Society of Mechanical Engineers. Guide for Verification and Validation in Computational Solid Mechanics. New York: American Society of Mechanical Engineers, 2006.Google Scholar
  3. 3.
    American Society of Mechanical Engineers. Standard for Verification and Validation in Computational Fluid Dynamics and Heat Transfer. New York: American Society of Mechanical Engineers, 2009.Google Scholar
  4. 4.
    American Society of Mechanical Engineers. An Illustration of the Concepts of Verification and Validation in Computational Solid Mechanics. New York: American Society of Mechanical Engineers, 2012.Google Scholar
  5. 5.
    Aquelet, N., M. Souli, and L. Olovsson. Euler–Lagrange coupling with damping effects: application to slamming problems. Comput. Methods Appl. Mech. Eng. 195:110–132, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Babuska, I., and Oden J. Tinsley. Verification and validation in computational engineering and science: basic concepts. Comput. Methods Appl. Mech. Eng. 193:4057–4066, 2004.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bailey, J., N. Curzen, and N. W. Bressloff. Assessing the impact of including leaflets in the simulation of TAVI deployment into a patient-specific aortic root. Comput. Methods Biomech. Biomed. Eng. 19:733–744, 2016.CrossRefGoogle Scholar
  8. 8.
    Bathe, K.-J. Finite Element Procedures (2nd ed.). Watertown: Prentice Hall, Pearson Education, Inc., 2014.zbMATHGoogle Scholar
  9. 9.
    Bavo, A. M., G. Rocatello, F. Iannaccone, J. Degroote, J. Vierendeels, and P. Segers. Fluid-structure interaction simulation of prosthetic aortic valves: comparison between immersed boundary and arbitrary Lagrangian–Eulerian techniques for the mesh representation. PLoS ONE 11:e0154517, 2016.CrossRefGoogle Scholar
  10. 10.
    Belytschko, T., J. I. Lin, and T. Chen-Shyh. Explicit algorithms for the nonlinear dynamics of shells. Comput. Methods Appl. Mech. Eng. 42:225–251, 1984.CrossRefzbMATHGoogle Scholar
  11. 11.
    Benson, D. J. Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99:235–394, 1992.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Bianchi, M., G. Marom, R. P. Ghosh, H. A. Fernandez, J. R. Taylor, M. J. Slepian, et al. Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artif. Organs 40:E292–E304, 2016.CrossRefGoogle Scholar
  13. 13.
    Bosmans, B., N. Famaey, E. Verhoelst, J. Bosmans, and Sloten J. Vander. A validated methodology for patient specific computational modeling of self-expandable transcatheter aortic valve implantation. J. Biomech. 49:2824–2830, 2016.CrossRefGoogle Scholar
  14. 14.
    Bozkurt, S., G. L. Preston-Maher, R. Torii, and G. Burriesci. Design, analysis and testing of a novel mitral valve for transcatheter implantation. Ann. Biomed. Eng. 45:1852–1864, 2017.CrossRefGoogle Scholar
  15. 15.
    Capelli, C., G. M. Bosi, E. Cerri, J. Nordmeyer, T. Odenwald, P. Bonhoeffer, et al. Patient-specific simulations of transcatheter aortic valve stent implantation. Med. Biol. Eng. Comput. 50:183–192, 2012.CrossRefGoogle Scholar
  16. 16.
    Chandran, K. B. Role of computational simulations in heart valve dynamics and design of valvular prostheses. Cardiovasc. Eng. Technol. 1:18–38, 2010.CrossRefGoogle Scholar
  17. 17.
    De Borst, R., and M. A. Crisfield. Nonlinear Finite Element Analysis of Solids and Structures. New York: Wiley, 2012.CrossRefzbMATHGoogle Scholar
  18. 18.
    De Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.CrossRefGoogle Scholar
  19. 19.
    Donea, J., S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian–Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33:689–723, 1982.CrossRefzbMATHGoogle Scholar
  20. 20.
    Engelmann, B. E., R. G. Whirley, and G. L. Goudreau. A simple shell element formulation for large-scale elastoplastic analysis. ASCE J. 1989.  https://doi.org/10.1590/S0100-73861999000300007.Google Scholar
  21. 21.
    Flamini, V., A. DeAnda, and B. E. Griffith. Immersed boundary-finite element model of fluid-structure interaction in the aortic root. Theor. Comput. fluid Dyn. 30:139–164, 2016.CrossRefGoogle Scholar
  22. 22.
    Flanagan, D. P., and T. Belytschko. A uniform strain hexahedron and quadrilateral with orthogonal hourglass control. Int. J. Numer. Methods Eng. 17:679–706, 1981.CrossRefzbMATHGoogle Scholar
  23. 23.
    Gharaie, S. H., B. Mosadegh, and Y. Morsi. In vitro validation of a numerical simulation of leaflet kinematics in a polymeric aortic valve under physiological conditions. Cardiovasc. Eng. Technol. 9:42–52, 2018.CrossRefGoogle Scholar
  24. 24.
    Glowinski, R., T. W. Pan, T. I. Hesla, D. D. Joseph, and J. Périaux. A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow. J. Comput. Phys. 169:363–426, 2001.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Halevi, R., A. Hamdan, G. Marom, K. Lavon, S. Ben-Zekry, E. Raanani, et al. Fluid–structure interaction modeling of calcific aortic valve disease using patient-specific three-dimensional calcification scans. Med. Biol. Eng. Comput. 54:1683–1694, 2016.CrossRefGoogle Scholar
  26. 26.
    Hirt, C. W., A. A. Amsden, and J. L. Cook. An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 135:203–216, 1997.CrossRefzbMATHGoogle Scholar
  27. 27.
    Hsu, M.-C., D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54:1055–1071, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Hughes, T. J. R., W. K. Liu, and T. K. Zimmermann. Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput. Methods Appl. Mech. Eng. 29:329–349, 1981.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Iaizzo, P. A. Heart Valves : From Design to Clinical Implantation. US: Springer, 2013.CrossRefGoogle Scholar
  30. 30.
    Knepell, P. L., and D. C. Arangno. SIMULATION VALIDATION : A Confidence Assessment Methodology. New York: Wiley-IEEE Computer Society Press, 1993.Google Scholar
  31. 31.
    Kosloff, D., and G. A. Frazier. Treatment of hourglass patterns in low order finite element codes. Int. J. Numer. Anal. Methods Geomech. 2:57–72, 1978.CrossRefGoogle Scholar
  32. 32.
    Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B 362:1393–1406, 2007.CrossRefGoogle Scholar
  33. 33.
    Lau, K. D., V. Diaz, P. Scambler, and G. Burriesci. Mitral valve dynamics in structural and fluid-structure interaction models. Med. Eng. Phys. 32:1057–1064, 2010.CrossRefGoogle Scholar
  34. 34.
    Li, J., X. Y. Luo, and Z. B. Kuang. A nonlinear anisotropic model for porcine aortic heart valves. J. Biomech. 34:1279–1289, 2001.CrossRefGoogle Scholar
  35. 35.
    Li, K., and W. Sun. Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann. Biomed. Eng. 38:2690–2701, 2010.CrossRefGoogle Scholar
  36. 36.
    Luraghi, G., W. Wu, F. De Gaetano, J. F. Rodriguez Matas, G. D. Moggridge, M. Serrani, et al. Evaluation of an aortic valve prosthesis: fluid-structure interaction or structural simulation? J. Biomech. 58:45–51, 2017.CrossRefGoogle Scholar
  37. 37.
    Mao, W., A. Caballero, R. McKay, C. Primiano, and W. Sun. Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model. PLoS ONE 12:e0184729, 2017.CrossRefGoogle Scholar
  38. 38.
    Mao, W., K. Li, and W. Sun. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 7:374–388, 2016.CrossRefGoogle Scholar
  39. 39.
    Marom, G. Numerical methods for fluid-structure interaction models of aortic valves. Arch. Comput. Methods Eng. 22:595–620, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Martin, C., T. Pham, and W. Sun. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardio-Thoracic Surg. 40:28–34, 2011.CrossRefGoogle Scholar
  41. 41.
    Martin, C., and W. Sun. Transcatheter valve underexpansion limits leaflet durability: implications for valve-in-valve procedures. Ann. Biomed. Eng. 45:394–404, 2016.CrossRefGoogle Scholar
  42. 42.
    Mohammadi, H., R. Cartier, and R. Mongrain. The impact of the aortic valve impairment on the distant coronary arteries hemodynamics: a fluid–structure interaction study. Med. Biol. Eng. Comput. 55:1859–1872, 2017.CrossRefGoogle Scholar
  43. 43.
    Morganti, S., N. Brambilla, A. S. Petronio, A. Reali, F. Bedogni, and F. Auricchio. Prediction of patient-specific post-operative outcomes of TAVI procedure: the impact of the positioning strategy on valve performance. J. Biomech. 49:2513–2519, 2016.CrossRefGoogle Scholar
  44. 44.
    Nagtegaal, J. C., D. M. Parks, and J. R. Rice. On numerically accurate finite element solutions in the fully plastic range. Comput. Methods Appl. Mech. Eng. 4:153–177, 1974.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Oberkampf, W. L., and T. G. Trucano. Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 38:209–272, 2002.CrossRefGoogle Scholar
  46. 46.
    Oberkampf, W. L., T. G. Trucano, and C. Hirsch. Verification, validation, and predictive capability in computational engineering and physics. Appl. Mech. Rev. 57:345, 2004.CrossRefGoogle Scholar
  47. 47.
    Ovcharenko, E. A., K. U. Klyshnikov, A. E. Yuzhalin, G. V. Savrasov, A. N. Kokov, A. V. Batranin, et al. Modeling of transcatheter aortic valve replacement: patient specific vs. general approaches based on finite element analysis. Comput. Biol. Med. 69:29–36, 2016.CrossRefGoogle Scholar
  48. 48.
    Pathmanathan, P., and R. A. Gray. Ensuring reliability of safety-critical clinical applications of computational cardiac models. Front Physiol. 4:358, 2013.CrossRefGoogle Scholar
  49. 49.
    Pathmanathan, P., R. A. Gray, V. J. Romero, and T. M. Morrison. Applicability analysis of validation evidence for biomedical computational models. J. Verif. Valid. Uncertain. Quantif. 2:21005, 2017.CrossRefGoogle Scholar
  50. 50.
    Pawlak, T. P., S. M. Yunus, and R. D. Cook. Solid elements with rotational degrees of freedom: part II—tetrahedron elements. Int. J. Numer. Methods Eng. 31:593–610, 1991.CrossRefzbMATHGoogle Scholar
  51. 51.
    Peskin, C. S. Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10:252–271, 1972.CrossRefzbMATHGoogle Scholar
  52. 52.
    Peskin, C. S. The immersed boundary method. Acta Numer. 11:479–517, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Roache, P. J. Verification and Validation in Computational Science and Engineering. Albuquerque: Hermosa, 1998.Google Scholar
  54. 54.
    Roache, P. J. Verification of codes and calculations. AIAA J. 36:696–702, 1998.CrossRefGoogle Scholar
  55. 55.
    Schendel, M. J., and C. F. Popelar. Numerical methods for design and evaluation of prosthetic heart valves. In: Hear Valves, Vol. 1, edited by J. A. D. Louis, R. W. Bianco, A. J. Hill, and J. A. D. St. Louis. New York: Hear Valves. Springer, 2013, pp. 321–341.CrossRefGoogle Scholar
  56. 56.
    Serrani, M., J. Brubert, J. Stasiak, F. De Gaetano, A. Zaffora, M. L. Costantino, et al. A computational tool for the microstructure optimization of a polymeric heart valve prosthesis. J. Biomech. Eng. 138:61001, 2016.CrossRefGoogle Scholar
  57. 57.
    Sigüenza, J., D. Pott, S. Mendez, S. J. Sonntag, T. A. S. Kaufmann, U. Steinseifer, et al. Fluid-structure interaction of a pulsatile flow with an aortic valve model: a combined experimental and numerical study. Int. J. Numer. Method Biomed. Eng. 34:e2945, 2018.MathSciNetCrossRefGoogle Scholar
  58. 58.
    Sturla, F., M. Ronzoni, M. Vitali, A. Dimasi, R. Vismara, G. Preston-Maher, et al. Impact of different aortic valve calcification patterns on the outcome of transcatheter aortic valve implantation: a finite element study. J. Biomech. 49:2520–2530, 2016.CrossRefGoogle Scholar
  59. 59.
    Sturla, F., E. Votta, M. Stevanella, C. A. Conti, and A. Redaelli. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics. Med. Eng. Phys. 35:1721–1730, 2013.CrossRefGoogle Scholar
  60. 60.
    Vy, P., V. Auffret, P. Badel, M. Rochette, H. Le Breton, P. Haigron, et al. Review of patient-specific simulations of transcatheter aortic valve implantation. Int. J. Adv. Eng. Sci. Appl. Math. 8:2–24, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Wall, W. A., A. Gerstenberger, P. Gamnitzer, C. Förster, and E. Ramm. Large deformation fluid-structure interaction: advances in ALE methods and new fixed grid approaches. In: Fluid-Structure Interaction, edited by H. J. Bungartz, and M. Schäfer. Berlin: Springer, 2006, pp. 195–232.CrossRefGoogle Scholar
  62. 62.
    Wu, W., D. Pott, B. Mazza, T. Sironi, E. Dordoni, C. Chiastra, et al. Fluid-structure interaction model of a percutaneous aortic valve: comparison with an in vitro test and feasibility study in a patient-specific case. Ann. Biomed. Eng. 44:590–603, 2016.CrossRefGoogle Scholar
  63. 63.
    Xu, F., S. Morganti, R. Zakerzadeh, D. Kamensky, F. Auricchio, A. Reali, et al. A framework for designing patient-specific bioprosthetic heart valves using immersogeometric fluid-structure interaction analysis. Int. J. Numer. Method Biomed. Eng. 34:e2938, 2018.MathSciNetCrossRefGoogle Scholar
  64. 64.
    Xuan, Y., K. Krishnan, J. Ye, D. Dvir, J. M. Guccione, L. Ge, et al. Stent and leaflet stresses in 29-mm second-generation balloon-expandable transcatheter aortic valve. Ann. Thorac. Surg. 104:773–781, 2017.CrossRefGoogle Scholar
  65. 65.
    Zakerzadeh, R., M.-C. Hsu, and M. S. Sacks. Computational methods for the aortic heart valve and its replacements. Expert Rev. Med. Devices 14:849–866, 2017.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2018

Authors and Affiliations

  1. 1.Laboratory of Biological Structure Mechanics (LaBS)Department of Chemistry, Materials and Chemical Engineering ‘Giulio Natta’MilanItaly

Personalised recommendations