Cardiovascular Engineering and Technology

, Volume 9, Issue 2, pp 141–150 | Cite as

Mechanosensitive microRNA-181b Regulates Aortic Valve Endothelial Matrix Degradation by Targeting TIMP3

  • Jack M. Heath
  • Joan Fernandez Esmerats
  • Lucky Khambouneheuang
  • Sandeep Kumar
  • Rachel Simmons
  • Hanjoong Jo


Calcific aortic valve disease (CAVD) is a major cause of morbidity in the aging population, but the underlying mechanisms of its progression remain poorly understood. Aortic valve calcification preferentially occurs on the fibrosa, which is subjected to disturbed flow. The side-specific progression of the disease is characterized by inflammation, calcific lesions, and extracellular matrix (ECM) degradation. Here, we explored the role of mechanosensitive microRNA-181b and its downstream targets in human aortic valve endothelial cells (HAVECs). Mechanistically, miR-181b is upregulated in OS and fibrosa, and it targets TIMP3, SIRT1, and GATA6, correlated with increased gelatinase/MMP activity. Overexpression of miR-181b led to decreased TIMP3 and exacerbated MMP activity as shown by gelatinase assay, and miR-181b inhibition decreased gelatinase activity through the repression of TIMP3 levels. Luciferase assay showed specific binding of miR-181b to the TIMP3 gene. Overexpression of miR-181b in HAVECs subjected to either LS or OS increased MMP activity, and miR-181b inhibition abrogated shear-sensitive MMP activity. These studies suggest that targeting this shear-dependent miRNA may provide a novel noninvasive treatment for CAVD.


microRNA Aortic valve Extracellular matrix Matrix metalloproteinase Shear stress Endothelium 



This study was funded by NIH (R01HL114772) as well as NHLBI Grants (HL119798, HL113451, HL095070 and HL124879).

Conflict of Interest

All the authors declare that they have no conflict of interest.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

13239_2017_296_MOESM1_ESM.docx (111 kb)
Supplementary Table I List of quantitative PCR primers used in analysis of gene targets of miRNA-181b (DOCX 112 kb)


  1. 1.
    Alfonso-Jaume, M. A., et al. Cardiac ischemia-reperfusion injury induces matrix metalloproteinase-2 expression through the AP-1 components FosB and JunB. Am. J. Physiol. Heart Circ. Physiol. 291:H1838–1846, 2006. doi: 10.1152/ajpheart.00026.2006.CrossRefGoogle Scholar
  2. 2.
    Ankeny, R. F., et al. Preferential activation of SMAD1/5/8 on the fibrosa endothelium in calcified human aortic valves—association with low BMP antagonists and SMAD6. PLoS ONE 6:e20969, 2011. doi: 10.1371/journal.pone.0020969.CrossRefGoogle Scholar
  3. 3.
    Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am. J. Physiol. Heart Circ. Physiol. 296:H756–764, 2009. doi: 10.1152/ajpheart.00900.2008.CrossRefGoogle Scholar
  4. 4.
    Cao, Q., et al. Interplay between microRNAs and the STAT3 signaling pathway in human cancers. Physiol. Genomics 45:1206–1214, 2013. doi: 10.1152/physiolgenomics.00122.2013.CrossRefGoogle Scholar
  5. 5.
    Cappelli, S., et al. Aortic valve disease and gamma-glutamyltransferase: accumulation in tissue and relationships with calcific degeneration. Atherosclerosis 213:385–391, 2010. doi: 10.1016/j.atherosclerosis.2010.08.063.CrossRefGoogle Scholar
  6. 6.
    Chen, J. H., and C. A. Simmons. Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ. Res. 108:1510–1524, 2011. doi: 10.1161/CIRCRESAHA.110.234237.CrossRefGoogle Scholar
  7. 7.
    Chen, Y. X., M. Zhang, Y. Cai, Q. Zhao, and W. Dai. The Sirt1 activator SRT1720 attenuates angiotensin II-induced atherosclerosis in apoE(−)/(−) mice through inhibiting vascular inflammatory response. Biochem. Biophys. Res. Commun. 465:732–738, 2015. doi: 10.1016/j.bbrc.2015.08.066.CrossRefGoogle Scholar
  8. 8.
    Cheung, P. Y., et al. Matrix metalloproteinase-2 contributes to ischemia-reperfusion injury in the heart. Circulation 101:1833–1839, 2000.CrossRefGoogle Scholar
  9. 9.
    Fan, D., et al. Differential role of TIMP2 and TIMP3 in cardiac hypertrophy, fibrosis, and diastolic dysfunction. Cardiovasc. Res. 103:268–280, 2014. doi: 10.1093/cvr/cvu072.CrossRefGoogle Scholar
  10. 10.
    Feinberg, M. W., and K. J. Moore. MicroRNA Regulation of Atherosclerosis. Circ. Res. 118:703–720, 2016. doi: 10.1161/CIRCRESAHA.115.306300.CrossRefGoogle Scholar
  11. 11.
    Guo, H. L., N. T. Ingolia, J. S. Weissman, and D. P. Bartel. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–866, 2010. doi: 10.1038/nature09267.CrossRefGoogle Scholar
  12. 12.
    Holliday, C. J., R. F. Ankeny, H. Jo, and R. M. Nerem. Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 301:H856–867, 2011. doi: 10.1152/ajpheart.00117.2011.CrossRefGoogle Scholar
  13. 13.
    Hsu, S. Y., I. C. Hsieh, S. H. Chang, M. S. Wen, and K. C. Hung. Aortic valve sclerosis is an echocardiographic indicator of significant coronary disease in patients undergoing diagnostic coronary angiography. Int. J. Clin. Pract. 59:72–77, 2005. doi: 10.1111/j.1742-1241.2004.00219.x.CrossRefGoogle Scholar
  14. 14.
    Jung, J.-J., et al. Multimodality and molecular imaging of matrix metalloproteinase activation in calcific aortic valve disease. J. Nucl. Med. 56:933–938, 2015. doi: 10.2967/jnumed.114.152355.CrossRefGoogle Scholar
  15. 15.
    Kaden, J. J., et al. Inflammatory regulation of extracellular matrix remodeling in calcific aortic valve stenosis. Cardiovascular Pathology 14:80–87, 2005. doi: 10.1016/j.carpath.2005.01.002.CrossRefGoogle Scholar
  16. 16.
    Kim, C. W., et al. Prevention of abdominal aortic aneurysm by anti-microRNA-712 or anti-microRNA-205 in angiotensin II-infused mice. Arterioscler. Thromb. Vasc. Biol. 34:1412–1421, 2014. doi: 10.1161/ATVBAHA.113.303134.CrossRefGoogle Scholar
  17. 17.
    Kumar, S., C. W. Kim, R. D. Simmons, and H. Jo. Role of flow-sensitive microRNAs in endothelial dysfunction and atherosclerosis: mechanosensitive athero-miRs. Arterioscler. Thromb. Vasc. Biol. 34:2206–2216, 2014. doi: 10.1161/atvbaha.114.303425.CrossRefGoogle Scholar
  18. 18.
    Lin, J., et al. MicroRNA-181b inhibits thrombin-mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10. FASEB J. 2016. doi: 10.1096/fj.201500163R.Google Scholar
  19. 19.
    Mohler, E. R., M. J. Sheridan, R. Nichols, W. P. Harvey, and B. F. Waller. Development and progression of aortic-valve stenosis—atherosclerosis risk-factors—a causal relationship—a clinical morphological-study. Clin. Cardiol. 14:995–999, 1991.CrossRefGoogle Scholar
  20. 20.
    Mohler, E. R., et al. Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528, 2001.CrossRefGoogle Scholar
  21. 21.
    Nagy, E., et al. Valvular osteoclasts in calcification and aortic valve stenosis severity. Int. J. Cardiol. 168:2264–2271, 2013. doi: 10.1016/j.ijcard.2013.01.207.CrossRefGoogle Scholar
  22. 22.
    Ni, C. W., H. Qiu, and H. Jo. MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 300:H1762–1769, 2011. doi: 10.1152/ajpheart.00829.2010.CrossRefGoogle Scholar
  23. 23.
    Otto, C. M., J. Kuusisto, D. D. Reichenbach, A. M. Gown, and K. D. Obrien. Characterization of the early lesion of degenerative valvular aortic-stenosis—histological and immunohistochemical studies. Circulation 90:844–853, 1994.CrossRefGoogle Scholar
  24. 24.
    Otto, C. M., et al. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N. Engl. J. Med. 341:142–147, 1999. doi: 10.1056/nejm199907153410302.CrossRefGoogle Scholar
  25. 25.
    Perrotta, I., et al. New evidence for a critical role of elastin in calcification of native heart valves: immunohistochemical and ultrastructural study with literature review. Histopathology 59:504–513, 2011. doi: 10.1111/j.1365-2559.2011.03977.x.CrossRefGoogle Scholar
  26. 26.
    Perrotta, I., A. Sciangula, S. Aquila, and S. Mazzulla. Matrix metalloproteinase-9 expression in calcified human aortic valves: a histopathologic, immunohistochemical, and ultrastructural study. Appl. Immunohistochem. Mol. Morphol. 24:128–137, 2016. doi: 10.1097/pai.0000000000000144.CrossRefGoogle Scholar
  27. 27.
    Platt, M. O., Y. Xing, H. Jo, and A. P. Yoganathan. Cyclic pressure and shear stress regulate matrix metalloproteinases and cathepsin activity in porcine aortic valves. J. Heart Valve Dis. 15:622–629, 2006.Google Scholar
  28. 28.
    Rathan, S., et al. Identification of side- and shear-dependent microRNAs regulating porcine aortic valve pathogenesis. Sci. Rep. 6:25397, 2016. doi: 10.1038/srep25397.CrossRefGoogle Scholar
  29. 29.
    Schonbeck, U., et al. Expression of stromelysin-3 in atherosclerotic lesions: regulation via CD40-CD40 ligand signaling in vitro and in vivo. J. Exp. Med. 189:843–853, 1999.CrossRefGoogle Scholar
  30. 30.
    Son, D. J., et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat. Commun. 4:3000, 2013. doi: 10.1038/ncomms4000.CrossRefGoogle Scholar
  31. 31.
    Soumyarani, V. S., and N. Jayakumari. Oxidatively modified high density lipoprotein promotes inflammatory response in human monocytes-macrophages by enhanced production of ROS, TNF-alpha, MMP-9, and MMP-2. Mol. Cell. Biochem. 366:277–285, 2012. doi: 10.1007/s11010-012-1306-y.CrossRefGoogle Scholar
  32. 32.
    Stephens, E. H., and K. J. Grande-Allen. Age-related changes in collagen synthesis and turnover in porcine heart valves. J. Heart Valve Dis. 16:672–682, 2007.Google Scholar
  33. 33.
    Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-β1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29:254–260, 2009. doi: 10.1161/atvbaha.108.176347.CrossRefGoogle Scholar
  34. 34.
    Sun, X., et al. MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation. J. Clin. Investig. 122:1973–1990, 2012. doi: 10.1172/JCI61495.Google Scholar
  35. 35.
    Sun, L., N. M. Rajamannan, and P. Sucosky. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. PLoS ONE 8:e84433, 2013. doi: 10.1371/journal.pone.0084433.CrossRefGoogle Scholar
  36. 36.
    Sun, X., et al. MicroRNA-181b improves glucose homeostasis and insulin sensitivity by regulating endothelial function in white adipose tissue. Circ. Res. 118:810–821, 2016. doi: 10.1161/CIRCRESAHA.115.308166.CrossRefGoogle Scholar
  37. 37.
    Tsoyi, K., et al. PTEN differentially regulates expressions of ICAM-1 and VCAM-1 through PI3 K/Akt/GSK-3beta/GATA-6 signaling pathways in TNF-alpha-activated human endothelial cells. Atherosclerosis 213:115–121, 2010. doi: 10.1016/j.atherosclerosis.2010.07.061.CrossRefGoogle Scholar
  38. 38.
    Uzui, H., et al. Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque: role of activated macrophages and inflammatory cytokines. Circulation 106:3024–3030, 2002.CrossRefGoogle Scholar
  39. 39.
    Vandooren, J., et al. Gelatin degradation assay reveals MMP-9 inhibitors and function of O-glycosylated domain. World J. Biol. Chem. 2:14–24, 2011. doi: 10.4331/wjbc.v2.i1.14.CrossRefGoogle Scholar
  40. 40.
    Wang, B., et al. TGFbeta-mediated upregulation of hepatic miR-181b promotes hepatocarcinogenesis by targeting TIMP3. Oncogene 29:1787–1797, 2010. doi: 10.1038/onc.2009.468.CrossRefGoogle Scholar
  41. 41.
    Wang, Y., et al. Circulating matrix metalloproteinase patterns in association with aortic dilatation in bicuspid aortic valve patients with isolated severe aortic stenosis. Heart Vessels 31:189–197, 2016. doi: 10.1007/s00380-014-0593-5.CrossRefGoogle Scholar
  42. 42.
    Yanagawa, B., et al. miRNA-141 is a novel regulator of BMP-2-mediated calcification in aortic stenosis. J. Thorac. Cardiovasc. Surg. 144:256–262, 2012. doi: 10.1016/j.jtcvs.2011.10.097.CrossRefGoogle Scholar
  43. 43.
    Yip, C. Y., J. H. Chen, R. Zhao, and C. A. Simmons. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29:936–942, 2009. doi: 10.1161/ATVBAHA.108.182394.CrossRefGoogle Scholar
  44. 44.
    Zhang, M., et al. MicroRNA-30b is a multifunctional regulator of aortic valve interstitial cells. J. Thorac. Cardiovasc. Surg. 147:1073–1080, 2014. doi: 10.1016/j.jtcvs.2013.05.011.CrossRefGoogle Scholar
  45. 45.
    Zhou, Q., et al. Smad2/3/4 pathway contributes to TGF-beta-Induced MiRNA-181b Expression to Promote Gastric Cancer Metastasis by Targeting Timp3. Cell. Physiol. Biochem. 39:453–466, 2016. doi: 10.1159/000445638.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Jack M. Heath
    • 1
  • Joan Fernandez Esmerats
    • 1
  • Lucky Khambouneheuang
    • 1
  • Sandeep Kumar
    • 1
  • Rachel Simmons
    • 1
  • Hanjoong Jo
    • 1
    • 2
  1. 1.Coulter Department of Biomedical EngineeringEmory University and Georgia Institute of TechnologyAtlantaUSA
  2. 2.Department of CardiologyEmory UniversityAtlantaUSA

Personalised recommendations