Finite Element Analysis of Patient-Specific Mitral Valve with Mitral Regurgitation

  • Thuy Pham
  • Fanwei Kong
  • Caitlin Martin
  • Qian Wang
  • Charles Primiano
  • Raymond McKay
  • John Elefteriades
  • Wei Sun
Article
  • 332 Downloads

Abstract

Functional mitral regurgitation (FMR) is a significant complication of left ventricular dysfunction and strongly associated with a poor prognosis. In this study, we developed a patient-specific finite element (FE) model of the mitral apparatus in a FMR patient which included: both leaflets with thickness, annulus, chordae tendineae, and chordae insertions on the leaflets and origins on the papillary muscles. The FE model incorporated human age- and gender-matched anisotropic hyperelastic material properties, and MV closure at systole was simulated. The model was validated by comparing the FE results from valve closure simulation with the in vivo geometry of the MV at systole. It was found that the FE model could not replicate the in vivo MV geometry without the application of tethering pre-tension force in the chordae at diastole. Upon applying the pre-tension force and performing model optimization by adjusting the chordal length, position, and leaflet length, a good agreement between the FE model and the in vivo model was established. Not only were the chordal forces high at both diastole and systole, but the tethering force on the anterior papillary muscle was higher than that of the posterior papillary muscle, which resulted in an asymmetrical gap with a larger orifice area at the anterolateral commissure resulting in MR. The analyses further show that high peak stress and strain were found at the chordal insertions where large chordal tethering forces were found. This study shows that the pre-tension tethering force plays an important role in accurately simulating the MV dynamics in this FMR patient, particularly in quantifying the degree of leaflet coaptation and stress distribution. Due to the complexity of the disease, the patient-specific computational modeling procedure of FMR patients presented should be further evaluated using a large patient cohort. However, this study provides useful insights into the MV biomechanics of a FMR patient, and could serve as a tool to assist in pre-operative planning for MV repair or replacement surgical or interventional procedures.

Keywords

Multi-slice computed tomography Mitral valve Mitral regurgitation Chordae tendineae Finite element simulation Patient-specific 

References

  1. 1.
    Acker, M. A., M. K. Parides, L. P. Perrault, et al. Mitral-valve repair versus replacement for severe ischemic mitral regurgitation. N. Engl. J. Med. 370:23–32, 2014.CrossRefGoogle Scholar
  2. 2.
    Bothe, W., J. P. Kvitting, J. C. Swanson, et al. How do annuloplasty rings affect mitral leaflet dynamic motion? Eur. J. Cardiothorac. Surg. 38:340–349, 2010.CrossRefGoogle Scholar
  3. 3.
    Choi, A., Y. Rim, J. S. Mun, and H. Kim. A novel finite element-based patient-specific mitral valve repair: virtual ring annuloplasty. Biomed. Mater. Eng. 24:341–347, 2014.Google Scholar
  4. 4.
    Ciarka, A., J. Braun, V. Delgado, et al. Predictors of mitral regurgitation recurrence in patients with heart failure undergoing mitral valve annuloplasty. Am. J. Cardiol. 106:395–401, 2010.CrossRefGoogle Scholar
  5. 5.
    de Oliveira, J., and M. J. Antunes. Mitral valve repair: better than replacement. Heart 92:275–281, 2006.CrossRefGoogle Scholar
  6. 6.
    Dudzinski, D. M., and J. Hung. Echocardiographic assessment of ischemic mitral regurgitation. Cardiovasc. Ultrasound. 12:46, 2014.CrossRefGoogle Scholar
  7. 7.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.CrossRefGoogle Scholar
  8. 8.
    Glower, D. D. Surgical approaches to mitral regurgitation. J. Am. Coll. Cardiol. 60:1315–1322, 2012.CrossRefGoogle Scholar
  9. 9.
    Gogoladze, G., S. L. Dellis, R. Donnino, et al. Analysis of the mitral coaptation zone in normal and functional regurgitant valves. Ann. Thorac. Surg. 89:1158–1161, 2010.CrossRefGoogle Scholar
  10. 10.
    Goldstein, D., A. J. Moskowitz, A. C. Gelijns, et al. Two-year outcomes of surgical treatment of severe ischemic mitral regurgitation. N. Engl. J. Med. 374:344–353, 2016.CrossRefGoogle Scholar
  11. 11.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. Phys. Sci. Solids. 61:1–48, 2000.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Iung, B. Management of ischaemic mitral regurgitation. Heart 89:459–464, 2003.CrossRefGoogle Scholar
  13. 13.
    Jensen, M. O., H. Jensen, M. Smerup, et al. Saddle-shaped mitral valve annuloplasty rings experience lower forces compared with flat rings. Circulation 118:S250–255, 2008.CrossRefGoogle Scholar
  14. 14.
    Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003.CrossRefGoogle Scholar
  15. 15.
    Jimenez, J. H., D. D. Soerensen, Z. He, J. Ritchie, and A. P. Yoganathan. Mitral valve function and chordal force distribution using a flexible annulus model: an in vitro study. Ann. Biomed. Eng. 33:557–566, 2005.CrossRefGoogle Scholar
  16. 16.
    Kunzelman, K. S., R. P. Cochran, E. D. Verrier, and R. C. Eberhart. Anatomic basis for mitral valve modelling. J. Heart Valve Dis. 3:491–496, 1994.Google Scholar
  17. 17.
    Kunzelman, K. S., M. S. Reimink, and R. P. Cochran. Flexible versus rigid ring annuloplasty for mitral valve annular dilatation: a finite element model. J. Heart Valve Dis. 7:108–116, 1998.Google Scholar
  18. 18.
    Laing, G., and P. E. Dupont. Beating-heart mitral valve chordal replacement. Conf. Proc. 2476–2479:2011, 2011.Google Scholar
  19. 19.
    Lam, J. H., N. Ranganathan, E. D. Wigle, and M. D. Silver. Morphology of the human mitral valve. I. Chordae tendineae: a new classification. Circulation 41:449–458, 1970.CrossRefGoogle Scholar
  20. 20.
    Lee, C.-H., P. J. A. Oomen, J. P. Rabbah et al. In: Functional Imaging and Modeling of the Heart. Proceedings of the 7th International Conference, FIMH 2013, London, UK, June 20–22, 2013, edited by O. Sébastien, D. Rueckert, and N. Smith. Springer, Heidelberg, 2013, pp. 416–424.Google Scholar
  21. 21.
    Liang, L., Kong, F., Martin, C. et al. Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images. Int. J. Numer. Methods Biomed. Eng. 2016. doi:10.1002/cnm.2827.Google Scholar
  22. 22.
    Magne, J., P. Pibarot, F. Dagenais, et al. Preoperative posterior leaflet angle accurately predicts outcome after restrictive mitral valve annuloplasty for ischemic mitral regurgitation. Circulation 115:782–791, 2007.CrossRefGoogle Scholar
  23. 23.
    Maisano, F., A. Redaelli, M. Soncini, et al. An annular prosthesis for the treatment of functional mitral regurgitation: finite element model analysis of a dog bone-shaped ring prosthesis. Ann. Thorac. Surg. 79:1268–1275, 2005.CrossRefGoogle Scholar
  24. 24.
    Mansi, T., I. Voigt, E. Assoumou Mengue, et al. Towards patient-specific finite-element simulation of MitralClip procedure. Med. Image Comput. Comput. Assist. Interv. 14:452–459, 2011.Google Scholar
  25. 25.
    Mansi, T., I. Voigt, B. Georgescu, et al. An integrated framework for finite-element modeling of mitral valve biomechanics from medical images: application to MitralClip intervention planning. Med. Image Anal. 16:1330–1346, 2012.CrossRefGoogle Scholar
  26. 26.
    McGee, Jr, E. C., A. M. Gillinov, E. H. Blackstone, et al. Recurrent mitral regurgitation after annuloplasty for functional ischemic mitral regurgitation. J. Thorac. Cardiovas. Surg. 128:916–924, 2004.CrossRefGoogle Scholar
  27. 27.
    Nicolini, F., A. Agostinelli, A. Vezzani, et al. Surgical treatment for functional ischemic mitral regurgitation: current options and future trends. Acta Biomed. 86:17–26, 2015.Google Scholar
  28. 28.
    Nielsen, S. L., H. Nygaard, A. A. Fontaine, et al. Chordal force distribution determines systolic mitral leaflet configuration and severity of functional mitral regurgitation. J. Am. Coll. Cardiol. 33:843–853, 1999.CrossRefGoogle Scholar
  29. 29.
    Pham, T. M., M. DeHerrera and W. Sun In: mechanics of biological systems and materials, volume 2. Proceedings of the 2011 Annual Conference on Experimental and Applied Mechanics, edited by Tom Proulx. Springer, New York, 2011, pp. 1–10.Google Scholar
  30. 30.
    Pham, T., and W. Sun. Material properties of aged human mitral valve leaflets. J. Biomed. Mater. Res. A. 102:2692–2703, 2014.CrossRefGoogle Scholar
  31. 31.
    Piérard, L. A., and B. A. Carabello. Ischaemic mitral regurgitation: pathophysiology, outcomes and the conundrum of treatment. Eur. Heart J. 31:2996–3005, 2010.CrossRefGoogle Scholar
  32. 32.
    Rushmer, R. F., B. L. Finlayson, and A. A. Nash. Movements of the mitral valve. Circ. Res. 4:337–342, 1956.CrossRefGoogle Scholar
  33. 33.
    Sakai, T., Y. Okita, Y. Ueda, et al. Distance between mitral anulus and papillary muscles: anatomic study in normal human hearts. J. Thorac. Cardiovasc. Surg. 118:636–641, 1999.CrossRefGoogle Scholar
  34. 34.
    Skallerud, B., V. Prot, and I. S. Nordrum. Modeling active muscle contraction in mitral valve leaflets during systole: a first approach. Biomech. Model. Mechanobiol. 10:11–26, 2011.CrossRefGoogle Scholar
  35. 35.
    Stevanella, M., F. Maffessanti, C. Conti, et al. Mitral valve patient-specific finite element modeling from cardiac MRI: application to an annuloplasty procedure. Cardiovasc. Eng. Technol. 2:66–76, 2011.CrossRefGoogle Scholar
  36. 36.
    Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4:190–199, 2005.CrossRefGoogle Scholar
  37. 37.
    Tahta, S. A., J. H. Oury, J. M. Maxwell, S. P. Hiro, and C. M. Duran. Outcome after mitral valve repair for functional ischemic mitral regurgitation. J. Heart Valve Dis. 11:11–18, 2002; (discussion 18–19).Google Scholar
  38. 38.
    Taramasso, M., and F. Maisano. Valvular disease: functional mitral regurgitation: should all valves be replaced? Nat. Rev. Cardiol. 13:65–66, 2016.CrossRefGoogle Scholar
  39. 39.
    Trichon, B. H., G. M. Felker, L. K. Shaw, C. H. Cabell, and C. M. O’Connor. Relation of frequency and severity of mitral regurgitation to survival among patients with left ventricular systolic dysfunction and heart failure. Am. J. Cardiol. 91:538–543, 2003.CrossRefGoogle Scholar
  40. 40.
    Votta, E., F. Maisano, S. F. Bolling, et al. The geoform disease-specific annuloplasty system: a finite element study. Ann. Thorac. Surg. 84:92–101, 2007.CrossRefGoogle Scholar
  41. 41.
    Wang, Q., C. Primiano, and W. Sun. Can isolated annular dilatation cause significant ischemic mitral regurgitation? Another look at the causative mechanisms. J. Biomech. 47:1792–1799, 2014.CrossRefGoogle Scholar
  42. 42.
    Wang, Q., and W. Sun. Finite element modeling of mitral valve dynamic deformation using patient-specific multi-slices computed tomography scans. Ann. Biomed. Eng. 41:142–153, 2013.CrossRefGoogle Scholar
  43. 43.
    Wong, V. M., J. F. Wenk, Z. Zhang, et al. The effect of mitral annuloplasty shape in ischemic mitral regurgitation: a finite element simulation. Ann. Thorac. Surg. 93:776–782, 2012.CrossRefGoogle Scholar
  44. 44.
    Yellin, E. L., C. Peskin, C. Yoran, et al. Mechanisms of mitral valve motion during diastole. Am. J. Physiol. Heart Circ. Physiol. 241:H389, 1981.Google Scholar
  45. 45.
    Zuo, K., T. Pham, K. Li, et al. Characterization of biomechanical properties of aged human and ovine mitral valve chordae tendineae. J. Mech. Behav. Biomed. Mater. 62:607–618, 2016.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2017

Authors and Affiliations

  • Thuy Pham
    • 1
  • Fanwei Kong
    • 1
  • Caitlin Martin
    • 1
  • Qian Wang
    • 1
  • Charles Primiano
    • 2
  • Raymond McKay
    • 2
  • John Elefteriades
    • 3
  • Wei Sun
    • 1
  1. 1.The Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of Technology and Emory UniversityAtlantaUSA
  2. 2.Cardiology Department of Hartford HospitalHartfordUSA
  3. 3.Aortic Institute of Yale-New Haven HospitalNew HavenUSA

Personalised recommendations