Fourier Transform Infrared Spectroscopic Imaging-Derived Collagen Content and Maturity Correlates with Stress in the Aortic Wall of Abdominal Aortic Aneurysm Patients

  • Rabee Cheheltani
  • Joseph E. Pichamuthu
  • Jayashree Rao
  • Justin S. Weinbaum
  • Mohammad F. Kiani
  • David A. Vorp
  • Nancy Pleshko


Abdominal aortic aneurysm (AAA) is a degenerative disease of the aorta characterized by severe disruption of the structural integrity of the aortic wall and its major molecular constituents. From the early stages of disease, elastin in the aorta becomes highly degraded and is replaced by collagen. Questions persist as to the contribution of collagen content, quality and maturity to the potential for rupture. Here, using our recently developed Fourier transform infrared imaging spectroscopy (FT-IRIS) method, we quantified collagen content and maturity in the wall of AAA tissues in pairs of specimens with different wall stresses. CT scans of AAAs from 12 patients were used to create finite element models to estimate stress in different regions of tissue. Each patient underwent elective repair of the AAA, and two segments of the AAA tissues from anatomic regions more proximal or distal with different wall stresses were evaluated by histology and FT-IRIS after excision. For each patient, collagen content was generally greater in the tissue location with lower wall stress, which corresponded to the more distal anatomic regions. The wall stress/collagen ratio was greater in the higher stress region compared to the lower stress region (1.01 ± 1.09 vs. 0.55 ± 0.084, p = 0.02). The higher stress region also corresponded to the location with reduced intraluminal thrombus thickness. Further, collagen maturity tended to decrease with increased collagen content (p = 0.068, R = 0.38). Together, these results suggest that an increase in less mature collagen content in AAA patients does not effectively compensate for the loss of elastin in the aortic wall, and results in a reduced capability to endure wall stresses.


Aneurysm Collagen Stress FTIR Extracellular matrix 


  1. 1.
    Hellenthal, F. A. M. V. I., W. A. Buurman, W. K. W. H. Wodzig, and G. W. H. Schurink. Biomarkers of AAA progression. Part 1: extracellular matrix degeneration. Nat. Rev. Cardiol. 6:464–474, 2009.CrossRefGoogle Scholar
  2. 2.
    Michel, J.-B., J.-L. Martin-Ventura, J. Egido, et al. Novel aspects of the pathogenesis of aneurysms of the abdominal aorta in humans. Cardiovasc. Res. 90:18–27, 2011.CrossRefGoogle Scholar
  3. 3.
    Vorp, D. A. Biomechanics of abdominal aortic aneurysm. J. Biomech. 40:1887–1902, 2007.CrossRefGoogle Scholar
  4. 4.
    Sakalihasan, N., R. Limet, and O. D. Defawe. Abdominal aortic aneurysm. Lancet 365(1577–158):9, 2005.Google Scholar
  5. 5.
    Laine, M. T., S. J. Laukontaus, I. Kantonen, and M. Venermo. Population-based study of ruptured abdominal aortic aneurysm. Br. J. Surg. 103:1634–1639, 2016.CrossRefGoogle Scholar
  6. 6.
    Tsamis, A., J. T. Krawiec, and D. A. Vorp. Elastin and collagen fibre microstructure of the human aorta in ageing and disease: a review. J. R. Soc. Interface 10:20121004, 2013.CrossRefGoogle Scholar
  7. 7.
    Carmo, M., L. Colombo, A. Bruno, et al. Alteration of elastin, collagen and their cross-links in abdominal aortic aneurysms. Eur J Vasc. Endovasc. Surg. 23:543–549, 2002.CrossRefGoogle Scholar
  8. 8.
    Samouillan, V., J. Dandurand, C. Lacabanne, et al. Characterization of aneurysmal aortas by biochemical, thermal, and dielectric techniques. J. Biomed. Mater. Res. A 95:611–619, 2010.CrossRefGoogle Scholar
  9. 9.
    Rizzo, R. J., W. J. McCarthy, S. N. Dixit, et al. Collagen types and matrix protein content in human abdominal aortic aneurysms. J Vasc. Surg 10:365–373, 1989.CrossRefGoogle Scholar
  10. 10.
    Tierney, A. P., D. M. Dumont, A. Callanan, G. E. Trahey, and T. M. McGloughlin. Acoustic radiation force impulse imaging on ex vivo abdominal aortic aneurysm model. Ultrasound Med. Biol. 36:821–832, 2010.CrossRefGoogle Scholar
  11. 11.
    Vande Geest, J. P., M. S. Sacks, and D. A. Vorp. The effects of aneurysm on the biaxial mechanical behavior of human abdominal aorta. J. Biomech. 39:1324–1334, 2006.CrossRefGoogle Scholar
  12. 12.
    Wilson, K. A., J. S. Lindholt, P. R. Hoskins, L. Heickendorff, S. Vammen, and A. W. Bradbury. The relationship between abdominal aortic aneurysm distensibility and serum markers of elastin and collagen metabolism. Eur. J. Vasc. Endovasc. Surg. 21:175–178, 2001.CrossRefGoogle Scholar
  13. 13.
    KA, Wilson, A. J. Lee, P. R. Hoskins, F. G. R. Fowkes, C. V. Ruckley, and A. W. Bradbury. The relationship between aortic wall distensibility and rupture of infrarenal abdominal aortic aneurysm. J. Vasc. Surg. 37:112–117, 2003.CrossRefGoogle Scholar
  14. 14.
    Adolph, R., D. A. Vorp, D. L. Steed, M. W. Webster, M. V. Kameneva, and S. C. Watkins. Cellular content and permeability of intraluminal thrombus in abdominal aortic aneurysm. J. Vasc. Surg. 25:916–926, 1997.CrossRefGoogle Scholar
  15. 15.
    Vorp, D. A., P. C. Lee, D. H. Wang, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J. Vasc. Surg. 34:291–299, 2001.CrossRefGoogle Scholar
  16. 16.
    Maier, A., M. W. Gee, C. Reeps, J. Pongratz, H.-H. Eckstein, and W. A. Wall. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann. Biomed. Eng. 38:3124–3134, 2010.CrossRefGoogle Scholar
  17. 17.
    Darling, R. C., C. R. Messina, D. C. Brewster, and L. W. Ottinger. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation 56:II161–II164, 1977.Google Scholar
  18. 18.
    Doyle, B. J., A. J. Cloonan, M. T. Walsh, D. A. Vorp, and T. M. McGloughlin. Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J. Biomech. 43:1408–1416, 2010.CrossRefGoogle Scholar
  19. 19.
    Kratzberg, J. A., P. J. Walker, E. Rikkers, and M. L. Raghavan. The effect of proteolytic treatment on plastic deformation of porcine aortic tissue. J. Mech. Behav. Biomed. Mater. 2:65–72, 2009.CrossRefGoogle Scholar
  20. 20.
    Bonnier, F., S. Rubin, L. Ventéo, et al. In-vitro analysis of normal and aneurismal human ascending aortic tissues using FT-IR microspectroscopy. Biochimica et Biophysica Acta 1758:968–973, 2006.CrossRefGoogle Scholar
  21. 21.
    Rubin, S., F. Bonnier, C. Sandt, et al. Analysis of structural changes in normal and aneurismal human aortic tissues using FTIR microscopy. Biopolymers 89:160–169, 2007.CrossRefGoogle Scholar
  22. 22.
    Bonnier, F., S. Rubin, L. Debelle, et al. FTIR protein secondary structure analysis of human ascending aortic tissues. J. Biophotonics 1:204–214, 2008.CrossRefGoogle Scholar
  23. 23.
    Bonnier, F., D. Bertrand, S. Rubin, et al. Detection of pathological aortic tissues by infrared multispectral imaging and chemometrics. Analyst 133:784–790, 2008.CrossRefGoogle Scholar
  24. 24.
    Sa, O’ Leary, J. J. Mulvihill, H. E. Barrett, et al. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J. Mech. Behav. Biomed. Mater. 42:154–167, 2015.CrossRefGoogle Scholar
  25. 25.
    Cheheltani, R., J. M. Rosano, B. Wang, A. K. Sabri, N. Pleshko, and M. F. Kiani. Fourier transform infrared spectroscopic imaging of cardiac tissue to detect collagen deposition after myocardial infarction. J. Biomed. Opt. 17:056014, 2012.CrossRefGoogle Scholar
  26. 26.
    Nallala, J., G. R. Lloyd, N. Shepherd, and N. Stone. High-resolution FTIR imaging of colon tissues for elucidation of individual cellular and histopathological features. Analyst 141:630–639, 2015.CrossRefGoogle Scholar
  27. 27.
    Noreen, R., M. Moenner, Y. Hwu, and C. Petibois. FTIR spectro-imaging of collagens for characterization and grading of gliomas. Biotechnol. Adv. 30:1432–1446, 2012.CrossRefGoogle Scholar
  28. 28.
    Tiwari, S., and R. Bhargava. Extracting knowledge from chemical imaging data using computational algorithms for digital cancer diagnosis. Yale J. Biol. Med. 88:131–143, 2015.Google Scholar
  29. 29.
    Tosi, G., E. Giorgini, C. Rubini, S. Sabbatini, V. Librando, and F. Alo. Vibrational spectroscopy as a supporting technique in clinical diagnosis and prognosis of atherosclerotic carotid plaques: a review. Anal. Quant. Cytopathol. Histpathol. 34:214–232, 2012.Google Scholar
  30. 30.
    Russell, H. K. A modification of Movat’s pentachrome stain. Arch. Pathol. 94:187–191, 1972.Google Scholar
  31. 31.
    Vande Geest, J. P., D. E. Schmidt, M. S. Sacks, and D. A. Vorp. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann. Biomed. Eng. 36:921–932, 2008.CrossRefGoogle Scholar
  32. 32.
    Vande Geest, J. P., Martino E. S. Di, A. Bohra, M. S. Makaroun, and D. A. Vorp. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann. N. Y. Acad. Sci. 1085:11–21, 2006.CrossRefGoogle Scholar
  33. 33.
    Boskey, A., and N. Pleshko Camacho. FT-IR imaging of native and tissue-engineered bone and cartilage. Biomaterials 28:2465–2478, 2007.CrossRefGoogle Scholar
  34. 34.
    Farlay, D., M.-E. Duclos, E. Gineyts, et al. The ratio 1660/1690 cm(−1) measured by infrared microspectroscopy is not specific of enzymatic collagen cross-links in bone tissue. PloS ONE 6:e28736, 2011.CrossRefGoogle Scholar
  35. 35.
    Barth, H. D., E. A. Zimmermann, E. Schaible, S. Y. Tang, T. Alliston, and R. O. Ritchie. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 32:8892–8904, 2011.CrossRefGoogle Scholar
  36. 36.
    McNerny, E. M., B. Gong, M. D. Morris, and D. H. Kohn. Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J. Bone Miner. Res. 30:455–464, 2014.CrossRefGoogle Scholar
  37. 37.
    Oest, M. E., B. Gong, K. Esmonde-White, et al. Parathyroid hormone attenuates radiation-induced increases in collagen crosslink ratio at periosteal surfaces of mouse tibia. Bone 86:91–97, 2016.CrossRefGoogle Scholar
  38. 38.
    Wen, X. X., F. Q. Wang, C. Xu, et al. Time related changes of mineral and collagen and their roles in cortical bone mechanics of ovariectomized rabbits. PLoS ONE 10:e0127973, 2015.CrossRefGoogle Scholar
  39. 39.
    Homes, C. C. Fourier transform infrared spectroscopy. Condens. Matter Phys., 1–28, 2011.Google Scholar
  40. 40.
    Choke, E., M. M. Thompson, J. Dawson, et al. Abdominal aortic aneurysm rupture is associated with increased medial neovascularization and overexpression of proangiogenic cytokines. Arterioscler. Thromb. Vasc. Biol. 26:2077–2082, 2006.CrossRefGoogle Scholar
  41. 41.
    Thompson, R. Abdominal aortic aneurysms: basic mechanisms and clinical implications. Curr. Probl. Surg. 39:110–230, 2002.CrossRefGoogle Scholar
  42. 42.
    Canfield, R., and P. B. Dobrin. Elastase, collagenase, and the biaxial elastic properties of dog carotid artery. Am. J. Physiol. 247:H124–H131, 1984.Google Scholar
  43. 43.
    Dobrin, P. B. Pathophysiology and pathogenesis of aortic aneurysms. Current concepts. Surg. Clin. N. Am. 69:687–703, 1989.CrossRefGoogle Scholar
  44. 44.
    Huffman, M. D., J. A. Curci, G. Moore, D. B. Kerns, B. C. Starcher, and R. W. Thompson. Functional importance of connective tissue repair during the development of experimental abdominal aortic aneurysms. Surgery 128:429–438, 2000.CrossRefGoogle Scholar
  45. 45.
    Tsarouhas, K., G. Soufla, S. Apostolakis, et al. Transcriptional regulation of TIMPs in ascending aorta aneurysms. Thromb. Res. 126:399–405, 2010.CrossRefGoogle Scholar
  46. 46.
    Satta, J., T. Juvonen, K. Haukipuro, M. Juvonen, and M. I. Kairaluoma. Increased turnover of collagen in abdominal aortic aneurysms, demonstrated by measuring the concentration of the aminoterminal propeptide of type III procollagen in peripheral and aortal blood samples. J. Vasc. Surg. 22:155–160, 1995.CrossRefGoogle Scholar
  47. 47.
    Menashi, S., J. S. Campa, R. M. Greenhalgh, and J. T. Powell. Collagen in abdominal aortic aneurysm: typing, content, and degradation. J. Vasc. Surg. 6:578–582, 1987.CrossRefGoogle Scholar
  48. 48.
    Eberlová, L., Z. Tonar, K. Witter, et al. Asymptomatic abdominal aortic aneurysms show histological signs of progression: a quantitative histochemical analysis. Pathobiology 80:11–23, 2013.CrossRefGoogle Scholar
  49. 49.
    Lindeman, J. H. N., B. A. Ashcroft, J.-W. M. Beenakker, et al. Distinct defects in collagen microarchitecture underlie vessel-wall failure in advanced abdominal aneurysms and aneurysms in Marfan syndrome. Proc. Natl. Acad. Sci. USA 107:862–865, 2010.CrossRefGoogle Scholar
  50. 50.
    Folkesson, M., A. Silveira, P. Eriksson, and J. Swedenborg. Protease activity in the multi-layered intra-luminal thrombus of abdominal aortic aneurysms. Atherosclerosis 218:294–299, 2011.CrossRefGoogle Scholar
  51. 51.
    Weber, K. T. Cardiac interstitium in health and disease: the fibrillar collagen network. J. Am. Coll. Cardiol. 13:1637–1652, 1989.CrossRefGoogle Scholar
  52. 52.
    Sun, Y., and K. T. Weber. Animal models of cardiac fibrosis. Methods Mol. Med. 117:273–290, 2005.Google Scholar
  53. 53.
    Sun, Y., M. F. Kiani, A. E. Postlethwaite, and K. T. Weber. Infarct scar as living tissue. Basic Res. Cardiol. 97:343–347, 2002.CrossRefGoogle Scholar
  54. 54.
    Wang, D. H. J., M. S. Makaroun, M. W. Webster, and D. A. Vorp. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J. Vasc. Surg. 36:598–604, 2002.CrossRefGoogle Scholar
  55. 55.
    Koole, D., H. J. Zandvoort, A. Schoneveld, et al. Intraluminal abdominal aortic aneurysm thrombus is associated with disruption of wall integrity. J. Vasc. Surg. 57:77–83, 2013.CrossRefGoogle Scholar
  56. 56.
    Bosemark, P., C. Perdikouri, M. Pelkonen, H. Isaksson, and M. Taqil. The masquelet induced membrane technique with BMP and a synthetic scaffold can heal a rat femoral critical size defect. J. Orthop. Res. 33:488–495, 2015.CrossRefGoogle Scholar
  57. 57.
    Sroka-Bartnicka, A., J. A. Kimber, L. Borkowski, et al. The biocompatibility of carbon hydroxyapatite/β-glucan composite for bone tissue engineering studied with Raman and FTIR spectroscopic imaging. Anal. Bioanal. Chem. 407:7775–7785, 2015.CrossRefGoogle Scholar
  58. 58.
    Saito, M., and K. Marumo. Effects of collagen crosslinking on bone material properties in health and disease. Calcif. Tissue Int. 97:242–261, 2015.CrossRefGoogle Scholar
  59. 59.
    Wetzel, D. L., G. R. Post, and R. A. Lodder. Synchrotron infrared microspectroscopic analysis of collagens I, III, and elastin on the shoulders of human thin-cap fibroatheromas. Vib. Spectrosc. 38:53–59, 2005.CrossRefGoogle Scholar
  60. 60.
    PA, West, Torzilli PA, C. Chen, P. Lin, and N. P. Camacho. Fourier transform infrared imaging spectroscopy analysis of collagenase-induced cartilage degradation. J. Biomed. Opt. 10:14015, 2005.CrossRefGoogle Scholar
  61. 61.
    Kim, S.-S., C. Young, and B. Mizaikoff. Miniaturized mid-infrared sensor technologies. Anal. Bioanal. Chem. 390:231–237, 2008.CrossRefGoogle Scholar
  62. 62.
    Speelman, L., F. A. Hellenthal, B. Pulinx, et al. The influence of wall stress on AAA growth and biomarkers. Eur. J. Vasc. Endovasc. Surg. 39:410–416, 2010.CrossRefGoogle Scholar
  63. 63.
    Raut, S. S., A. Jana, V. De Oliveira, S. C. Muluk, and E. A. Finol. The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J. Biomech. Eng. 135:81010, 2013.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Rabee Cheheltani
    • 1
    • 6
  • Joseph E. Pichamuthu
    • 2
  • Jayashree Rao
    • 2
  • Justin S. Weinbaum
    • 2
    • 3
  • Mohammad F. Kiani
    • 1
  • David A. Vorp
    • 2
    • 3
    • 4
  • Nancy Pleshko
    • 5
  1. 1.Department of Mechanical EngineeringTemple UniversityPhiladelphiaUSA
  2. 2.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  3. 3.McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUSA
  4. 4.Department of Surgery, Department of Cardiothoracic Surgery, and Center for Vascular Remodeling and RegenerationUniversity of PittsburghPittsburghUSA
  5. 5.Department of BioengineeringTemple UniversityPhiladelphiaUSA
  6. 6.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations