Skip to main content
Log in

Improved Blood Pressure Prediction Using Systolic Flow Correction of Pulse Wave Velocity

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Hypertension is a significant worldwide health issue. Continuous blood pressure monitoring is important for early detection of hypertension, and for improving treatment efficacy and compliance. Pulse wave velocity (PWV) has the potential to allow for a continuous blood pressure monitoring device; however published studies demonstrate significant variability in this correlation. In a recently presented physics-based mathematical model of PWV, flow velocity is additive to the classic pressure wave as estimated by arterial material properties, suggesting flow velocity correction may be important for cuff-less non-invasive blood pressure measures. The present study examined the impact of systolic flow correction of a measured PWV on blood pressure prediction accuracy using data from two published in vivo studies. Both studies examined the relationship between PWV and blood pressure under pharmacological manipulation, one in mongrel dogs and the other in healthy adult males. Systolic flow correction of the measured PWV improves the R2 correlation to blood pressure from 0.51 to 0.75 for the mongrel dog study, and 0.05 to 0.70 for the human subjects study. The results support the hypothesis that systolic flow correction is an essential element of non-invasive, cuff-less blood pressure estimation based on PWV measures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Blacher, J., R. Asmar, S. Djane, G. M. London, and M. E. Safar. Aortic pulse wave velcity as a marker of cardiovascular risk in hypertensive patients. Hypertension 33:1111–1117, 1999.

    Article  Google Scholar 

  2. Blacher, J., A. P. Guerin, B. Pannier, et al. Impact of aortic stiffness on survival in end stage renal disease. Circulation 99(18):2434–2439, 1999.

    Article  Google Scholar 

  3. Bramwell, J. C., and A. V. Hill. The formation of breakers in the transmission of pulse wave. J. Physiol. 57(lxxiii):73–74, 1923.

    Google Scholar 

  4. Burgess, C. The hemodynamic effects of aminophylline and salbutamol alone and in combination. Clin. Pharm. Ther. 40(5):550–553, 1986.

    Article  Google Scholar 

  5. Calhoun, D. A., D. Jones, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension 51(1403):2008, 2008.

    Google Scholar 

  6. Chen, Y., W. Changyun, T. Guocai, B. Min, and G. Li. Continuous and noninvasive blood pressure measurement: A novel modeling methodology of the relationship between blood pressure and pulse wave velocity. Ann. Biomed. Eng. 37(11):2222–2233, 2009.

    Article  Google Scholar 

  7. Chen, W., T. Kobayashi, S. Ichikawa, Y. Takeuchi, and T. Togawa. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. 38:569–574, 2000.

    Article  Google Scholar 

  8. Guidelines (JSH 2009). Measurement and clinical evaluation of blood pressure. Hypertens. Res. 2009 32:11–23, 2009.

    Google Scholar 

  9. Hamzaoui, O., J. F. Georger, X. Monnet, H. Ksouri, J. Maizel, C. Richard, and J. L. Teboul. Early administration of norepeniphrine increases cardiac preload and cardiac output in septic patients with life threatening hypotension. Crit. Care 14(R142):1–9, 2010.

    Google Scholar 

  10. Hardung, V. Propagation of pulse waves in Visco-elastic tubings. Handbook of Physiology 2(1):107–135, 1962.

    Google Scholar 

  11. He, D., D. E. S. Winokur, and C. G. Sodini. A continuous, wearable, and wireless heart rate monitor using head ballistocardiogram and head electrocardiogram, in 33rd Ann. Conf. IEEE EMBS, 2011

  12. Hill, A. V., and J. C. Bramwell. The velocity of the pulse wave in man. Proc. R. Soc. Exp. Biol. Med. 93:298–306, 1922.

    Article  Google Scholar 

  13. Histand, M., and M. Anliker. Influence of flow and pressure on wave propagation in the canine aorta. Circ. Res. 32:524–529, 1973.

    Article  Google Scholar 

  14. Hsieh, K. S., C. K. Chang, K. C. Chang, and H. I. Chen. Effect of loading conditions on peak aortic flow velocity and its maximal acceleration. Proc. Natl. Sci. 15(3):165–170, 1991.

    Google Scholar 

  15. Hughes, D., F. Babbs, and C. Geddes. Measurement of Young’s modulus of elasticity of the canine aorta with ultrasound. Ultrasound Imaging 1(4):356–367, 1979.

    Article  Google Scholar 

  16. Kim, E. J., C. G. Park, J. D. Park, S. Y. Suh, C. U. Choi, J. W. Kim, S. H. Kim, H. E. Lim, S. W. Rha, H. S. Seo, and D. J. Oh. Relationship between blood pressure parameters and pulse wave velocity in normotensive and hypertensive subjects: Invasive study. J. Hum. Hypertens. 21:141–148, 2007.

    Article  Google Scholar 

  17. Klabunde, R. Cardiovascular Physiology Concepts (2nd ed.). Philadelphia: Lippincott Williams & Wilkins, 2011.

    Google Scholar 

  18. Kobayashi, T., S. Ichikawa, Y. Takeuchi, T. Togawa, and W. Chen. Continuous estimation of systolic blood pressure using the pulse arrival time and intermittent calibration. Med. Biol. Eng. Comput. 38:569–574, 2000.

    Article  Google Scholar 

  19. Kortweg, J. D. Uber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Rorren. Ann. Phys. Und Chem. Neue Folge 5:225, 1878.

    Google Scholar 

  20. Liberson, A. S., J. S. Lillie, and D. A. Borkholder. Numerical solution for the boussinesq type models with application to arterial flow. JFFHMT 1:9–15, 2014.

    Google Scholar 

  21. Lieber, A., S. Millasseau, L. Bourhis, J. Blacher, A. Protogerou, B. Levy, and M. Safar. Aortic wave reflection in men and women. Am. J. Physiol. Heart Circ. 299:H235–H242, 2010.

    Article  Google Scholar 

  22. Lillie J.S., A.S. Liberson, D.A. Borkholder, “Pulse wave velocity prediction in multi-layer thick wall arterial segments,” in FFHMT, Ottawa, 2015, Paper No. 163.

  23. Lillie, J. S., A. S. Liberson, D. Mix, K. Schwartz, A. Chandra, D. B. Phillips, S. W. Day, and D. A. Borkholder. Pulse wave velocity prediction and compliance assessment in elastic arterial segments. Cardiovasc. Eng. Technol. 6(1):49–58, 2014.

    Article  Google Scholar 

  24. Nurnberger, J., A. Saez, S. Dammer, A. Mitchell, R. Wenzel, T. Philipp, and R. Schafers. Left ventricular ejection time: A potential determinant of pulse wave velocity in young, healthy males. J. Hypertens. 21(11):2125–2132, 2003.

    Article  Google Scholar 

  25. Ochiai, R., J. Takeda, H. Hosaka, Y. Sugo, R. Tanaka, and T. Soma. The relationship between modified pulse wave transit time and cardiovascular changes in isoflourane anesthetized dogs. J. Clin. Monit. 15:493–501, 1999.

    Article  Google Scholar 

  26. O’Rourke, M. McDonald’s blood flow in arteries: Theoretical, experimental and clinical principles (5th ed.). USA: Oxford University Press, 2005.

    Google Scholar 

  27. O’Rourke, M., and J. Seward. Central arterial pressure and arterial pressure pulse: New views entering the second century after Korotkov. Mayo Clin. Proc. 81(8):1057–1068, 2006.

    Article  Google Scholar 

  28. Ottesen, J. T., and M. Danielsen. Mathematical Modeling in Medicine. The Netherlands: IOS Press, 2000.

    Google Scholar 

  29. Payne, R. A., C. Symeonides, D. Webb, and S. Maxwell. Pulse transit time measured from the ECG: An unreliable marker of beat-to-beat blood pressure. J. Appl. Physiol. 100:136–141, 2006.

    Article  Google Scholar 

  30. Pedley, T. J. The fluid mechanics of large blood vessels. Cambridge: Cambridge University Press, 2008.

    MATH  Google Scholar 

  31. Poole-Wilson, P. A., G. Lewis, T. Angerpointer, A. D. Malcom, and B. T. Williams. Haemodynamic effects of salbutamol and nitroprusside after cardiac surgery. Br. Heart J. 39:721–725, 1977.

    Article  Google Scholar 

  32. Salvi, P., C. Palombo, G. Salvl, C. Labat, G. Parati, and A. Benetos. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity. Sept: J. Appl. Physiol., 2013.

    Google Scholar 

  33. Smulyan, H., S. Mookherjee, and R. A. Warner. The effect of nitroglycerin on forearm arterial distensibility. Circulation 76(6):1264–1269, 1886.

    Google Scholar 

  34. Tanaka, H., M. Munakata, et al. Comparison between carotid-femoral and brachial-ankle pulse wave velocity as measures of arterial stiffness. J. Hypertens. 27(10):2022–2027, 2009.

    Article  Google Scholar 

  35. World Health Organization. A global brief on hypertension, silent killer, global public health crisis. Document number: WHO/DCO/WHD/2013.2 2013. Geneva: WHO, 2013

  36. Yu, W. C., S. Y. Chuang, Y. P. Lin, and C. H. Chen. Brachial-ankle vs carotid-femoral pulse wave velocity as a determinant of cardiovascular structure and function. J. Hum. Hypertens. 22(1):24–31, 2008.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from Google.

Conflict of Interest

Jeffrey S. Lillie, Alexander S. Liberson, and David A. Borkholder declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Borkholder.

Additional information

Associate Editors Mark Fogel and Ajit P. Yoganathan oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lillie, J.S., Liberson, A.S. & Borkholder, D.A. Improved Blood Pressure Prediction Using Systolic Flow Correction of Pulse Wave Velocity. Cardiovasc Eng Tech 7, 439–447 (2016). https://doi.org/10.1007/s13239-016-0281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-016-0281-y

Keywords

Navigation