Cardiovascular Engineering and Technology

, Volume 9, Issue 2, pp 126–140 | Cite as

Morphology, Clinicopathologic Correlations, and Mechanisms in Heart Valve Health and Disease

  • Frederick J. SchoenEmail author


The clinical and pathological features of the most frequent intrinsic structural diseases that affect the heart valves are well established, but heart valve disease mechanisms are poorly understood, and effective treatment options are evolving. Major advances in the understanding of the structure, function and biology of native valves and the pathobiology, biomaterials and biomedical engineering, and the clinical management of valvular heart disease have occurred over the past several decades. This communication reviews contemporary considerations relative to the pathology of valvular heart disease, including (1) clinical significance and epidemiology of valvular heart disease; (2) functional and dynamic valvular macro-, micro- and ultrastructure; (3) causes, morphology and mechanisms of human valvular heart disease; and (4) pathologic considerations in valve replacement, repair and, potentially, regeneration of the heart valves.


Heart valve disease Pathology Heart valve replacement Aortic valve Mechanisms of heart valve disease Mitral valve 


Conflict of interest

The author is a paid consultant to: Medtronic, Inc.; Sorin Medical, Inc.; St. Jude Medical, Inc.; Symetis; Xeltis.

Statement of Human Studies

No human studies were carried out by the author for this article.

Statement of Animal Studies

No animal studies were carried out by the author for this article.


  1. 1.
    Adams, D. H., J. J. Popma, M. J. Reardon, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 370:1790–1798, 2014.CrossRefGoogle Scholar
  2. 2.
    Aggarwal, A., A. M. Pouch, E. Lai, J. Lesicko, P. A. Yushkevich, J. H. Gorman, 3rd, et al. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets. J. Biomech. 2016. doi: 10.1016/j.jbiomech.2016.04.038.Google Scholar
  3. 3.
    Aikawa, E., and F. J. Schoen. Calcific and degenerative heart valve disease. In: Cellular and Molecular Basis of Cardiovascular Disease, edited by M. S. Willis, J. W. Homeister, and J. R. Stone. 2014, pp. 161–180.CrossRefGoogle Scholar
  4. 4.
    Aikawa, E., P. Whittaker, M. Farber, K. Mendelson, R. F. Padera, M. Aikawa, and F. J. Schoen. Human semilumar cardiac valve remodeling by activated cells from fetus to adult. Circulation 113:1344–1352, 2006.CrossRefGoogle Scholar
  5. 5.
    Alavi, S. H., and A. Kheradvar. A hybrid tissue-engineered heart valve. Ann. Thorac. Surg. 99:2183–2187, 2015.CrossRefGoogle Scholar
  6. 6.
    Armstrong, E. J., and J. Bischoff. Heart valve development. Epithelial cell signaling and differentiation. Circ. Res. 95:459–470, 2004.CrossRefGoogle Scholar
  7. 7.
    Arsalan, M., and T. Walther. Durability of prostheses for transcatheter aortic valve implantation. Nat. Rev. Cardiol. 13:360–367, 2016.CrossRefGoogle Scholar
  8. 8.
    Ayoub, S., Ferrari, G., Gorman, R. C., Gorman, J. H. 3rd, Schoen, F. J., Sacks, M. S. Heart valve biomechanics and underlying mechanobiology. Compr. Physiol. 2016 (in press)Google Scholar
  9. 9.
    Bechtel, J. F., C. Muller-Steinhardtke, A. Brunswik, U. Stierle, and H. H. Sievers. Evaluation of the decellularized pulmonary valve homograft (SynerGraft). J. Heart Valve Dis. 12:734–739, 2003.Google Scholar
  10. 10.
    Bischoff, J., and E. Aikawa. Progenitor cells confer plasticity to cardiac valve endothelium. J Cardiovasc. Transl. Res. 4:710–719, 2011.CrossRefGoogle Scholar
  11. 11.
    Bonow, R. O., M. B. Leon, D. Dashi, and N. Moat. Management strategies and future challenges for aortic valve disease. Lancet 387:1312–1323, 2016.CrossRefGoogle Scholar
  12. 12.
    Boodhwani, M., and G. El Khoury. Aortic valve repair: indications and outcomes. Curr. Cardiol. Rep. 16:490, 2014. doi: 10.1007/s11886-014-0490.7.CrossRefGoogle Scholar
  13. 13.
    Bourantas, C. V., and P. W. Serruys. Evolution of transcatheter aortic valve replacement. Circ. Res. 114:1037–1051, 2014.CrossRefGoogle Scholar
  14. 14.
    Bouten, C. V., A. Driessen-Mol, and F. P. Baaijens. In situ heart valve tissue engineering: simple devices, smart materials, complex knowledge. Expert Rev. Med. Devices 9:453–455, 2012.CrossRefGoogle Scholar
  15. 15.
    Brown, J. M., S. M. O’Brien, C. Wu, J. A. Sikora, B. P. Griffith, and J. S. Gammie. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J. Thorac. Cardiovasc. Surg. 137:82–90, 2009.CrossRefGoogle Scholar
  16. 16.
    Cahill, T. J., and B. D. Prendergast. Infective endocarditis. Lancet 387:882–893, 2016.CrossRefGoogle Scholar
  17. 17.
    Carabello, B. A. Aortic stenosis. New Engl J Med 346:677–682, 2002.CrossRefGoogle Scholar
  18. 18.
    Chakraborty, S., J. Cheek, B. Sakthivel, B. J. Aronow, and K. E. Yutzey. Shared gene expression profiles in developing heart valves and osteoblast progenitor cells. Physiol Genom 35:75–85, 2008.CrossRefGoogle Scholar
  19. 19.
    Cheatham, J. P., W. E. Hellenbrand, E. M. Zahn, T. K. Jones, D. P. Berman, J. A. Vincent, et al. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replaement in the US Melody valve investigational device exemption trial. Circulation 131:1960–1970, 2015.CrossRefGoogle Scholar
  20. 20.
    Chester, A. H., I. El-Hamamsy, J. T. Butcher, N. Latif, S. Bertazzo, and M. H. Yacoub. The living aortic valve: from molecules to function. Glob. Cardiol. Sci. Practice 11:52–77, 2014.Google Scholar
  21. 21.
    Cheung, D. Y., B. Duan, and J. T. Butcher. Current progress in tissue engineering of heart valves: multiscale problems, multiscale solutions. Expert Opin. Biol. Ther. 15:1155–1172, 2015.CrossRefGoogle Scholar
  22. 22.
    Christie, G. W., and B. G. Barratt-Boyes. Age-dependent changes in the radial stretch of human aortic valve leaflets determined by biaxial testing. Ann. Thorac. Surg. 60:S156–S158, 1995.CrossRefGoogle Scholar
  23. 23.
    Di Bardino, D., A. El Bardissi, S. McClure, et al. Four decades experience with mitral valve repair: analysis of differential indications, technical evolution, and long term outcome. J. Thorac. Cardiovasc. Surg. 139:76–84, 2010.CrossRefGoogle Scholar
  24. 24.
    Dreger, S. A., P. M. Taylor, S. P. Allen, and M. H. Yacoub. Profile and localization of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) in human heart valves. J. Heart Valve Dis. 11:875–880, 2002.Google Scholar
  25. 25.
    Dvir, D., M. Barbanti, J. Tan, and J. G. Webb. Transcatheter aortic valve-in-valve implantation for patients with degenerative surgical bioprosthetic valves. Curr. Probl. Cardiol. 39:7–27, 2014.CrossRefGoogle Scholar
  26. 26.
    Dweck, M. R., H. J. Khaw, G. K. Z. Sng, E. L. Luo, A. Baird, M. C. Williams, et al. Aortic stenosis, atherosclerosis, and skeletal bone: is there a common link with calcification and inflammation? Eur. Heart J. 34:1567–1574, 2013.CrossRefGoogle Scholar
  27. 27.
    Fassa, A. A., D. Himbert, and A. Vahanian. Mechanisms and management of TAVR-related complications. Nat. Rev. Cardiol. 10:685–696, 2013.CrossRefGoogle Scholar
  28. 28.
    Flameng, W., F. Rega, M. Vercalsteren, P. Herijgers, and B. Meuris. Antimineralization treatment and patient-prosthesis mismatch are major determinants of the onset and incidence of structural valve degeneration in bioprosthetic heart valves. J. Thorac. Cardiovasc. Surg. 147:1219–1224, 2014.CrossRefGoogle Scholar
  29. 29.
    Gammie, J. S., S. Sheng, B. P. Griffith, et al. Trends in mitral valve surgery in the United States: results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann. Thorac. Surg. 87:1431–1439, 2009.CrossRefGoogle Scholar
  30. 30.
    Ghazanfari, S., A. Driessen-Mol, B. Sanders, P. E. Dijkman, S. P. Hoerstrup, F. P. Baaijens, et al. In vivo collagen remodeling in the vascular wall of decellularized stented tissue-engineered heart valves. Tissue Eng. A 21:2206–2215, 2015.CrossRefGoogle Scholar
  31. 31.
    Goettsch, C., J. D. Hutcheson, and E. Aikawa. MicroRNA in cardiovascular calcification. Focus on targets and extracellular vesicle delivery mechanism. Circ. Res. 112:1073–1084, 2013.CrossRefGoogle Scholar
  32. 32.
    Hamm, C. V. V., M. Arsalan, and M. J. Mack. The future of transcatheter aortic valve implantation. Eur. Heart J. 37:803–810, 2016.CrossRefGoogle Scholar
  33. 33.
    Hilbert, S. L., F. J. Schoen, and V. J. Ferrans. Allograft heart valves: Morphologic, biomechanical and explant pathology studies. In: Cardiac Reconstructions with Allograft Tissues2nd, edited by R. Hopkins. New York: Springer, 2004, pp. 193–233.Google Scholar
  34. 34.
    Hinton, R. B., and K. E. Yutzey. Heart valve structure and function in development and disease. Ann. Rev. Physiol. 73:29–46, 2011.CrossRefGoogle Scholar
  35. 35.
    Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, et al. Functional living trileaflet heart valves grown in-vitro. Circulation 102:III-44–III-49, 2000.CrossRefGoogle Scholar
  36. 36.
    Honda, S., T. Miyamoto, T. Watanabe, T. Narumi, S. Kadowaki, Y. Honda, et al. A novel mouse model of aortic valve stenosis induced by direct wire injury. Arterioscler. Thromb. Vasc. Biol. 34:270–278, 2014.CrossRefGoogle Scholar
  37. 37.
    Huang, G., and S. H. Rahimtoola. Prosthetic heart valve. Circulation 123:2602–2605, 2011.CrossRefGoogle Scholar
  38. 38.
    Iung, B., and A. Vahanian. Epidemiology of acquired valvular heart disease. Can. J. Cardiol. 30:962–970, 2014.CrossRefGoogle Scholar
  39. 39.
    Jung, J. J., M. Razavian, A. A. Challa, L. Nie, R. Golestani, J. Zhang, et al. Multimodality and molecular imaging of matrix metalloproteinase activation in calcific aortic valve disease. J. Nucl. Med. 56:933–938, 2015.CrossRefGoogle Scholar
  40. 40.
    Kapadia, S. R., M. B. Leon, R. R. Makkar, E. M. Tuzcu, L. G. Svensson, S. Kodali, et al. 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperative aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385:2485–2491, 2015.CrossRefGoogle Scholar
  41. 41.
    Kheradvar, A., E. M. Groves, L. P. Dasi, S. H. Alavi, R. Tranquillo, K. J. Grande-Allen, et al. Emerging trends in heart valve engineering: Part 1. Solutions for future. Ann. Biomed. Eng. 43:833–843, 2015.CrossRefGoogle Scholar
  42. 42.
    Kheradvar, A., E. M. Groves, C. J. Goergen, S. H. Alavi, R. Tranquillo, C. A. Simmons, et al. Emerging trends in heart valve engineering: Part 2. Novel and standard technologies for aortic valve replacement. Ann. Biomed. Eng. 43:844–857, 2015.CrossRefGoogle Scholar
  43. 43.
    Kheradvar, A., E. M. Groves, C. A. Simmons, B. Griffith, S. H. Alavi, R. Tranquillo, et al. Emerging Trends in heart valve engineering: Part 3. Novel technologies for mitral valve repair and replacement. Ann. Biomed. Eng. 43:858–870, 2015.CrossRefGoogle Scholar
  44. 44.
    Kurobe, H., M. W. Maxfield, C. K. Breuer, and T. Shinoka. Concise review: tissue-engineered vascular grafts for cardiac surgery: past, present, and future. Stem Cell Transl. Med. 1:5665–5671, 2012.Google Scholar
  45. 45.
    Latif, N., A. Quillon, P. Sarathchandra, A. McCormack, A. Lozanoski, M. H. Yacoub, et al. Modulation of human valve interstitial cell phenotype and function using a fibroblast growth factor 2 formulation. PLoS ONE 10:e0127844, 2015.CrossRefGoogle Scholar
  46. 46.
    Law, K. B., K. R. Phillips, and J. Butany. Pulmonary valve-in-valve implants: how long do they prolong reintervention and what causes them to fail? Cardiovasc. Pathol. 21:519–521, 2012.CrossRefGoogle Scholar
  47. 47.
    Levine, R. A., A. A. Hagege, D. P. Judge, M. Padala, J. P. Dal-Bianco, E. Aikawa, et al. Mitral valve disease—morphology and mechanism. Nat. Rev. Cardiol. 12:689–710, 2015.CrossRefGoogle Scholar
  48. 48.
    Levy, R. J., F. J. Schoen, and S. Howard. Mechanism of calcification of porcine aortic valve cusps: role of T-lymphocytes. Am. J. Cardiol. 52:629–631, 1983.CrossRefGoogle Scholar
  49. 49.
    Li, C., S. Xu, and A. I. Gotlieb. The response to valve injury. A paradigm to understand the pathogenesis of heart valve disease. Cardiovasc. Pathol. 20:183–190, 2011.CrossRefGoogle Scholar
  50. 50.
    Li, C., S. Xu, and A. I. Gotlieb. The progression of calcific aortic valve disease through injury, cell dysfunction, and disruptive biologic and physical force feedback loops. Cardiovasc. Pathol. 22:1–8, 2013.CrossRefGoogle Scholar
  51. 51.
    Lincoln, J., and V. Garg. Etiology of valvular heart disease. Genetic and developmental origins. Circ. J. 78:1801–1807, 2014.CrossRefGoogle Scholar
  52. 52.
    Liu, A. C., V. R. Joag, and A. I. Gotlieb. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171:1407–1418, 2007.CrossRefGoogle Scholar
  53. 53.
    Lueders, C., B. Jastram, R. Hetzer, and H. Schwandt. Rapid manufacturing techniques for the tissue engineering of human heart valves. Eur. J. Cardiothorac. Surg. 46:593–601, 2014.CrossRefGoogle Scholar
  54. 54.
    MacGrogan, D., G. Luxan, A. Driessen-Mol, C. Bouten, F. Baaijens, and J. L. de la Pompa. How to make a heart valve: from embryonic development to bioengineering of living valve substitutes. Cold Spring Harb Perspect Med. 4:a013912, 2014.CrossRefGoogle Scholar
  55. 55.
    Mack, M. J., M. B. Leon, C. R. Smith, D. C. Miller, J. W. Moses, E. M. Tuzcu, et al. 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385:2477–2484, 2015.CrossRefGoogle Scholar
  56. 56.
    Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. de Backer, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373:2015–2024, 2015.CrossRefGoogle Scholar
  57. 57.
    Manji, R. Z., B. Skser, A. H. Henkis, and D. K. C. Cooper. Bioprosthetic heart valves of the future. Xenotransplantation 21:1–10, 2014.CrossRefGoogle Scholar
  58. 58.
    Markwald, R. R., R. A. Norris, R. Moreno-Rodriguez, and R. A. Levine. Developmental basis of adult cardiovascular diseases: valvular heart diseases. Ann. N.Y. Acad Sci. 2007(1188):177–183, 2010.CrossRefGoogle Scholar
  59. 59.
    Masoumi, N., N. Annabi, A. Assmann, B. L. Larson, J. Hjortnaes, N. Alemdar, et al. Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials 35:7774–7785, 2014.CrossRefGoogle Scholar
  60. 60.
    Matheny, R. G., M. L. Hutchison, P. E. Dryden, H. D. Hiles, and C. J. Shaar. Porcine small intestine submucosa as a pulmonary valve leaflet substitute. J. Heart Valve Dis. 9:769–774, 2000.Google Scholar
  61. 61.
    Mendelson, K. M., and F. J. Schoen. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed Eng. 34:1799–1819, 2006.CrossRefGoogle Scholar
  62. 62.
    Mitchell, R. N., R. A. Jonas, and F. J. Schoen. Pathology of explanted cryopreserved allograft heart valves: comparison with aortic valves from orthotopic heart transplants. J. Thorac. Cardiovasc. Surg. 115:118–127, 1998.CrossRefGoogle Scholar
  63. 63.
    Mohr, F. W. Decade in review—valvular disease: Current perspectives on treatment of valvular heart disease. Nat. Rev. Cardiol. 11:637–638, 2014.CrossRefGoogle Scholar
  64. 64.
    Mongkoldhumrongkul, N., M. H. Yacoub, and A. H. Chester. Valve endothelial cells—not just any old endothelial cells. Curr. Vasc. Pharmacol. 14:146–154, 2016.CrossRefGoogle Scholar
  65. 65.
    Mordi, I., and N. Tzemos. Bicuspid aortic valve disease: a comprehensive review. Cardiol. Res. Pract. 2012. doi: 10.1155/2012/196037.Google Scholar
  66. 66.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al. Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation 2016;133:e38–e60.CrossRefGoogle Scholar
  67. 67.
    Mylotte, D., A. Andalib, P. Theriault-Lauzier, M. Dorfmeister, M. Girgis, W. Alharnbi, et al. Transcatheter heart valve failure: a systematic review. Eur. Heart J. 36:1306–1327, 2015.CrossRefGoogle Scholar
  68. 68.
    Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin 3rd, R. A. Guyton, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 63:e57–e185, 2014.CrossRefGoogle Scholar
  69. 69.
    O’Connor, C. T., and T. J. Kiernan. Contemporary management of prosthetic valve endocarditis: principles and future outlook. Expert Rev. Cardiovasc. Ther. 13:501–510, 2015.CrossRefGoogle Scholar
  70. 70.
    Rabkin, E., M. Aikawa, J. R. Stone, Y. Fukumoto, P. Libby, and F. J. Schoen. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:2525–2532, 2001.CrossRefGoogle Scholar
  71. 71.
    Rabkin-Aikawa, E., M. Aikawa, M. Farber, J. R. Kratz, G. Garcia-Cardena, N. T. Kouchoukos, et al. Clinical pulmonary autograft valves: pathologic evidence of adaptive remodeling in the aortic site. J. Thorac. Cardiovasc. Surg. 128:552–561, 2004.CrossRefGoogle Scholar
  72. 72.
    Rabkin-Aikawa, E., M. Farber, M. Aikawa, and F. J. Schoen. Dynamic and reversible changes of interstitial cell phenotype during development and remodeling of cardiac valves. J. Heart Valve Dis. 13:841–847, 2004.Google Scholar
  73. 73.
    Rajamannan, N. M., F. J. Evans, E. Aikawa, K. J. Grande-Allen, L. L. Demer, D. D. Heistad, et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Circulation 124:1783–1791, 2011.CrossRefGoogle Scholar
  74. 74.
    Rashedi, N., and C. M. Otto. Aortic stenosis: changing disease concepts. J. Cardiovasc. Ultrasound 23:59–69, 2015.CrossRefGoogle Scholar
  75. 75.
    Remenyi, B., A. ElGuindy, S. C. Smith, Jr, M. Yacoub, and D. R. Holmes, Jr. Valvular aspects of rheumatic heart disease. Lancet 387:1335–1346, 2016.CrossRefGoogle Scholar
  76. 76.
    Rizzo, S., C. Basso, E. Lazzarini, R. Celeghin, A. Paolin, G, Gerosa, et al. TGF-beta1 pathway activation and adherens junction molecular pattern in nonsyndromic mitral valve prolapse. Cardiovasc. Pathol. 24:359–367, 2015.CrossRefGoogle Scholar
  77. 77.
    Sacks, M. S., and F. J. Schoen. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62:359–371, 2002.CrossRefGoogle Scholar
  78. 78.
    Schoen, F. J. Interventional and Surgical Cardiovascular Pathology: Clinical Correlations and Basic Principles. Philadelphia: WB Saunders, pp. 415, 1989.Google Scholar
  79. 79.
    Schoen, F. J. Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. J. Heart Valve Dis. 6:1–6, 1997.Google Scholar
  80. 80.
    Schoen, F. J. Pathology of heart valve substitution with mechanical and tissue prostheses. In: Cardiovascular Pathology3rd, edited by M. D. Silver, A. I. Gotlieb, F. J. Schoen, and W. B. Saunders. 2001, pp. 629–677.Google Scholar
  81. 81.
    Schoen, F. J. Heart valve tissue engineering: quo vadis? Curr. Opin. Biotechnol. 22:698–705, 2011.CrossRefGoogle Scholar
  82. 82.
    Schoen, F. J. Evolving concepts of heart valve dynamics. The continuum of development, functional structure, pathology and tissue engineering. Circulation 118:1864–1880, 2008.CrossRefGoogle Scholar
  83. 83.
    Schoen, F. J. Mechanisms of function and disease in natural and replacement heart valves. Ann. Rev. Pathol. Mech. Dis. 7:161–183, 2012.CrossRefGoogle Scholar
  84. 84.
    Schoen, F. J., and J. Butany. Cardiac valve replacement and related interventions. In: Cardiovascular Pathology4th, edited by L. M. Buja, and J. Butany. Amsterdam: Elsevier, 2016, pp. 529–576.CrossRefGoogle Scholar
  85. 85.
    Schoen, F. J., and W. D. Edwards. Valvular heart disease: General principles and stenosis. In: Cardiovascular Pathology3rd, edited by M. D. Silver, A. I. Gotlieb, and F. J. Schoen. Philadelphia: WB Saunders, 2001, pp. 402–442.Google Scholar
  86. 86.
    Schoen, F. J., Gotlieb, A. I. Heart valve health, disease, replacement, and repair: a 25-year cardiovascular pathology perspective. Cardiovasc. Pathol. 25:341–352, 2016.CrossRefGoogle Scholar
  87. 87.
    Schoen, F. J., and R. J. Levy. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann. Thorac. Surg. 79:1072–1080, 2005.CrossRefGoogle Scholar
  88. 88.
    Schoen, F. J., and R. N. Mitchell. The heart. In: Robbins/Cotran Pathologic Basis of Disease9th, edited by V. Kumar, A. Abbas, and J. C. Aster. Philadelphia: W.B. Saunders, 2015, pp. 523–578.Google Scholar
  89. 89.
    Schoen, F. J., et al. Pathological considerations in replacement cardiac valves. Cardiovasc. Pathol. 1:29–52, 1992.CrossRefGoogle Scholar
  90. 90.
    Shah, S. R., and N. R. Vyavahare. The effect of glycosaminoglycan stabilization on tissue buckling in bioprosthetic heart valves. Biomaterials 29:1645–1653, 2008.CrossRefGoogle Scholar
  91. 91.
    Sharma, S., A. Mehra, and S. H. Rahimtoola. Valvular heart disease: a century of progress. Am. J. Med. 121:664–673, 2008.CrossRefGoogle Scholar
  92. 92.
    Simon, P., M. T. Kasimir, G. Seebacher, G. Weigel, R. Ullrich, U. Salzer-Muhar, et al. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardiothorac. Surg. 23:1002–1006, 2003.CrossRefGoogle Scholar
  93. 93.
    Spicer, D. E., J. M. Bridgeman, N. A. Brown, T. J. Mohun, and R. H. Anderson. The anatomy and development of the cardiac valves. Cardiol. Young 24:1008–1022, 2014.CrossRefGoogle Scholar
  94. 94.
    Stephens, E. H., N. de Jonge, M. P. McNeill, C. A. Durst, and K. J. Grande-Allen. Age-related changes in material behavior of porcine mitral and aortic valves and correlation to matrix composition. Tissue Eng. Part A 16:867–878, 2010.CrossRefGoogle Scholar
  95. 95.
    Stollerman, G. H. Rheumatic fever in the 21st century. Clin. Infect. Dis. 33:806–814, 2001.CrossRefGoogle Scholar
  96. 96.
    Torre, M., D. Hwang, R. F. Padera, R. N. Mitchell, and P. A. VanderLaan. Osseous and chondromatous metaplasia in calcific aortic stenosis. Cardiovasc. Pathol. 25:18–24, 2016.CrossRefGoogle Scholar
  97. 97.
    Wirrig, E. E., R. B. Hinton, and K. E. Yutzey. Differential expression of cartilage and bone-related proteins in pediatric and adult diseased aortic valves. J. Mol. Cell. Cardiol. 50:561–569, 2011.CrossRefGoogle Scholar
  98. 98.
    Yutzey, K. E., L. L. Demer, S. C. Body, G. S. Huggins, D. A. Towler, C. M. Giachelli, et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler. Thromb. Vasc. Biol. 34:2387–2393, 2014.CrossRefGoogle Scholar
  99. 99.
    Zhang, X., B. Xu, D. S. Puperi, A. L. Yonezawa, Y. Wu, H. Tseng, et al. Integrating valve-inspired design features into poly(ethylene glycol) hydrogel scaffolds for heart valve tissue engineering. Acta Biomater. 14:11–21, 2015.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  1. 1.Department of PathologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations