Advertisement

Cardiovascular Engineering and Technology

, Volume 7, Issue 4, pp 309–351 | Cite as

Biomechanical Behavior of Bioprosthetic Heart Valve Heterograft Tissues: Characterization, Simulation, and Performance

  • Joao S. Soares
  • Kristen R. Feaver
  • Will Zhang
  • David Kamensky
  • Ankush Aggarwal
  • Michael S. Sacks
Article

Abstract

The use of replacement heart valves continues to grow due to the increased prevalence of valvular heart disease resulting from an ageing population. Since bioprosthetic heart valves (BHVs) continue to be the preferred replacement valve, there continues to be a strong need to develop better and more reliable BHVs through and improved the general understanding of BHV failure mechanisms. The major technological hurdle for the lifespan of the BHV implant continues to be the durability of the constituent leaflet biomaterials, which if improved can lead to substantial clinical impact. In order to develop improved solutions for BHV biomaterials, it is critical to have a better understanding of the inherent biomechanical behaviors of the leaflet biomaterials, including chemical treatment technologies, the impact of repetitive mechanical loading, and the inherent failure modes. This review seeks to provide a comprehensive overview of these issues, with a focus on developing insight on the mechanisms of BHV function and failure. Additionally, this review provides a detailed summary of the computational biomechanical simulations that have been used to inform and develop a higher level of understanding of BHV tissues and their failure modes. Collectively, this information should serve as a tool not only to infer reliable and dependable prosthesis function, but also to instigate and facilitate the design of future bioprosthetic valves and clinically impact cardiology.

Keywords

Bioprosthetic heart valve Heterograft Valve mechanics Constitutive modeling Mechanical testing Exogenous crosslinking Fluid structure interaction Modeling and simulation 

Nomenclature

Abbreviations

AHA

American Heart Association

AV

Aortic valve

BHV

Bioprosthetic heart valve

BP

Bovine pericardium

ECM

Extracellular matrix

FE

Finite element

GAG

Glycosaminoglycan

GLBP

Glutaraldehyde bovine pericardium

GLUT

Gluraraldehyde treatment

LEHI

Linear elastic homogeneous incompressible

microCT

Micro X-ray computed tomography

MRI

Magnetic resonance images

MV

Mitral valve

PAV

Porcine aortic valve

PBS

Phosphate buffered saline

PD

Preferred direction

RVE

Representative volume element

SALS

Small angle light scattering

TEHV

Tissue-engineered heart valve

UTS

Ultimate tensile stregth

VEC

Valvular endothelial cell

VIC

Valvular interstitial cell

XD

Cross-preferred direction

List of symbols

ΔM

Infinitesimal mass

ΔV

Infinitesimal volume

ρ

Mass density

\( \varepsilon \)

Fiber uniaxial strain (in structural constitutive model)

\( \theta \)

Fiber orientation angle (in structural constitutive model)

cf

Volume fraction of fibers (in structural constitutive model)

C

Left Cauchy-Green stretch tensor

\( D(\varepsilon ) \)

Fiber recruitment statistical distribution (in structural constitutive model)

E

Green–Lagrange strain tensor

Eij

Components of the Green-Lagrange strain tensor

\( I(\theta ) \)

Angular distribution of scattered light (in SALS analysis)

\( R(\theta ) \)

Fiber angular distribution (in structural constitutive model)

S

Second Piola–Kirchhoff stress tensor

Sij

Components of the second Piola–Kirchhoff stress tensor

\( {\mathbf{S}}^{f} \)

Second Piola–Kirchhoff stress tensor in the fiber (in structural constitutive model)

\( S_{nn}^{f} \)

Component of the Piola–Kirchhoff stress tensor in the fiber along fiber direction (in structural constitutive model)

W

Stored energy function

\( w(\varepsilon ) \)

Stored energy function of fiber (in structural constitutive model)

Wf

Stored energy function of the fiber ensemble (in structural constitutive model)

Wm

Stored energy function of the matrix (in structural constitutive model)

I1, I2, I3

Principal invariants of the left Cauchy-Green stretch tensor

Notes

Acknowledgments

National Institute of Health, Award Number R01 HL119297 and R01 HL63954 to MSS. National Institute of Health, Award T32 to KRF. American Heart Association, Post Doctoral Fellowship 14POST18720037 to AA.

Conflict of interest

None of the authors have any conflicts of interest to report.

Ethical Approval

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

References

  1. 1.
    Aggarwal, A., G. Ferrari, E. Joyce, M. J. Daniels, R. Sainger, J. H. Gorman, 3rd, et al. Architectural trends in the human normal and bicuspid aortic valve leaflet and its relevance to valve disease. Ann. Biomed. Eng. 42(5):986–998, 2014. doi: 10.1007/s10439-014-0973-0.CrossRefGoogle Scholar
  2. 2.
    Aggarwal, A., and M. Sacks. A framework for determination of heart valves’ mechanical properties using inverse-modeling approach. In: Functional Imaging and Modeling of the Heart, edited by H. van Assen, P. Bovendeerd, and T. Delhaas. Lecture Notes in Computer Science: Springer International Publishing, 2015, pp. 285–294.CrossRefGoogle Scholar
  3. 3.
    Ali, A., J. C. Halstead, F. Cafferty, L. Sharples, F. Rose, R. Coulden, et al. Are stentless valves superior to modern stented valves? A prospective randomized trial. Circulation. 114(1 Suppl):I535–I540, 2006. doi: 10.1161/CIRCULATIONAHA.105.000950.Google Scholar
  4. 4.
    Amini, R., C. E. Eckert, K. Koomalsingh, J. McGarvey, M. Minakawa, J. H. Gorman, et al. On the in vivo deformation of the mitral valve anterior leaflet: effects of annular geometry and referential configuration. Ann. Biomed. Eng. 40(7):1455–1467, 2012. doi: 10.1007/s10439-012-0524-5.CrossRefGoogle Scholar
  5. 5.
    Astorino, M., J.-F. Gerbeau, O. Pantz, and K.-F. Traoré. Fluid-structure interaction and multi-body contact: application to aortic valves. Comput. Method Appl. Mech. Eng. 198:3603–3612, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Baaijens, F. P. T. A fictitious domain/mortar element method for fluid-structure interaction. Int. J. Numer. Methods Fluids 35(7):743–761, 2001.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp–Part I: Experimental results. J. Biomech. Eng. 122(1):23–30, 2000.CrossRefGoogle Scholar
  8. 8.
    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II–A structural constitutive model. J. Biomech. Eng. 122(4):327–335, 2000.CrossRefGoogle Scholar
  9. 9.
    Black, M. M., I. C. Howard, X. Huang, and E. A. Patterson. A three-dimensional analysis of a bioprosthetic heart valve. J. Biomech. 24(9):793–801, 1991.CrossRefGoogle Scholar
  10. 10.
    Blackstone, E. H. Could it happen again? The Bjork-Shiley convexo-concave heart valve story. Circulation 111(21):2717–2719, 2005.CrossRefGoogle Scholar
  11. 11.
    Bogaers, A. E. J., S. Kok, B. D. Reddy, and T. Franz. Quasi-Newton methods for implicit black-box FSI coupling. Comput. Method Appl. Mech. Eng. 279:113–132, 2014.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Borazjani, I. Fluid-structure interaction, immersed boundary-finite element method simulations of bio-prosthetic heart valves. Comput. Method Appl. Mech. Eng. 257:103–116, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Borazjani, I., L. Ge, and F. Sotiropoulos. Curvilinear immersed boundary method for simulating fluid structure interaction with complex 3D rigid bodies. J. Comput. Phys. 227(16):7587–7620, 2008.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Braunwald, N. S., T. Cooper, and A. G. Morrow. Complete replacement of the mitral valve. Successful clinical application of a flexible polyurethane prosthesis. J. Thorac. Cardiovasc. Surg. 40:1–11, 1960.Google Scholar
  15. 15.
    Buchanan, R. M., and M. S. Sacks. Interlayer micromechanics of the aortic heart valve leaflet. Biomech. Model. Mechanobiol. 2013. doi: 10.1007/s10237-013-0536-6.Google Scholar
  16. 16.
    Buehler, M. J. Atomistic and continuum modeling of mechanical properties of collagen: Elasticity, fracture, and self-assembly. J. Mater. Res. 21(08):1947–1961, 2006. doi: 10.1557/jmr.2006.0236.CrossRefGoogle Scholar
  17. 17.
    Burriesci, G., I. C. Howard, and E. A. Patterson. Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J. Med. Eng. Technol. 23(6):203–215, 1999.CrossRefGoogle Scholar
  18. 18.
    Cacciola, G., G. W. Peters, and F. P. Baaijens. A synthetic fiber-reinforced stentless heart valve. J. Biomech. 33(6):653–658, 2000.CrossRefGoogle Scholar
  19. 19.
    Cacciola, G., G. W. Peters, and P. J. Schreurs. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J. Biomech. 33(5):521–530, 2000.CrossRefGoogle Scholar
  20. 20.
    Carew, E. O., A. Garg, J. E. Barber, and I. Vesely. Stress relaxation preconditioning of porcine aortic valves. Ann. Biomed. Eng. 32(4):563–572, 2004.CrossRefGoogle Scholar
  21. 21.
    Carmody, C. J., G. Burriesci, I. C. Howard, and E. A. Patterson. An approach to the simulation of fluid-structure interaction in the aortic valve. J. Biomech. 39:158–169, 2006.CrossRefGoogle Scholar
  22. 22.
    Cataloglu, A., R. E. Clark, and P. L. Gould. Stress analysis of aortic-valve leaflets with smoothed geometrical data. J. Biomech. 10(3):153–158, 1977. doi: 10.1016/0021-9290(77)90053-7.CrossRefGoogle Scholar
  23. 23.
    Chandran, K. B. Role of computational simulations in heart valve dynamics and design of valvular prostheses. Cardiovascular engineering and technology. 1(1):18–38, 2010. doi: 10.1007/s13239-010-0002-x.CrossRefGoogle Scholar
  24. 24.
    Chew, G. G., I. C. Howard, and E. A. Patterson. Simulation of damage in a porcine prosthetic heart valve. J. Med. Eng. Technol. 23(5):178–189, 1999.CrossRefGoogle Scholar
  25. 25.
    Chew, P. H., F. C. Yin, and S. L. Zeger. Biaxial stress-strain properties of canine pericardium. J. Mol. Cell. Cardiol. 18(6):567–578, 1986.CrossRefGoogle Scholar
  26. 26.
    Choi, H. S., and R. P. Vito. Two-dimensional stress-strain relationship for canine pericardium. J. Biomech. Eng. 112(2):153–159, 1990.CrossRefGoogle Scholar
  27. 27.
    Christie, G. W. Anatomy of aortic heart valve leaflets: the influence of glutaraldehyde fixation on function. Eur. J. Cardiothorac. Surg. 6:S25–S33, 1992.CrossRefGoogle Scholar
  28. 28.
    Christie, G., and B. Barratt-Boyes, editors Time-dependent changes to the leaflet elasticity of the Medtronic Intact valve in vivo. World Symposium on Heart Valve Disease, London; 1999.Google Scholar
  29. 29.
    Chuong, C. J., and Y. C. Fung. Three-dimensional stress distribution in arteries. J. Biomech. Eng. 105(3):268–274, 1983.CrossRefGoogle Scholar
  30. 30.
    Chuong, C. J., and Y. C. Fung. On residual stresses in arteries. J. Biomech. Eng. 108(2):189–192, 1986.CrossRefGoogle Scholar
  31. 31.
    Cohn, L. H. Cutler, Elliot, Carr mitral-valve surgery at Peter-Bent-Brigham-Hospital 1923. J. Card. Surg. 9:137–138, 1994.CrossRefGoogle Scholar
  32. 32.
    Cohn, L. H., J. J. Collins, Jr, V. J. Disesa, G. S. Couper, P. S. Peigh, W. Kowalker, et al. Fifteen-year experience with 1678 Hancock Porcine bioprosthetic heart vavle replacements. Ann. Surg. 210(4):435–442, 1989.CrossRefGoogle Scholar
  33. 33.
    Conti, C. A., E. Votta, A. Della Corte, L. Del Viscovo, C. Bancone, M. Cotrufo, et al. Dynamic finite element analysis of the aortic root from MRI-derived parameters. Med. Eng. Phys. 32(2):212–221, 2010. doi: 10.1016/j.medengphy.2009.12.003.CrossRefGoogle Scholar
  34. 34.
    Courant, R., K. Friedrichs, and H. Lewy. Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1):32–74, 1928.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Courant, R., K. Friedrichs, and H. Lewy. On the partial difference equations of mathematical physics. IBM J. Res. Develop. 11:215–234, 1967.MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Crofts, C. E., and E. A. Trowbridge. The tensile strength of natural and chemically modified bovine pericardium. J. Biomed. Mater. Res. 22:89–98, 1988.CrossRefGoogle Scholar
  37. 37.
    de Hart, J. Fluid-Structure Interaction in the Aortic Heart Valve: a three-dimensional computational analysis (Ph.D. Thesis). Eindhoven: Technische Universiteit Eindhoven, 2002.Google Scholar
  38. 38.
    De Hart, J., F. P. Baaijens, G. W. Peters, and P. J. Schreurs. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J. Biomech. 36(5):699–712, 2003.CrossRefGoogle Scholar
  39. 39.
    De Hart, J., G. W. M. Peters, P. J. G. Schreurs, and F. P. T. Baaijens. A three-dimensional computational analysis of fluid-structure interaction in the aortic valve. J. Biomech. 36:103–112, 2003.CrossRefGoogle Scholar
  40. 40.
    Donea, J., S. Giuliani, and J. P. Halleux. An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comput. Methods Appl. Mech. Eng. 33:689–723, 1982.zbMATHCrossRefGoogle Scholar
  41. 41.
    Donea, J., A. Huerta, J.-P. Ponthot, and A. Rodriguez-Ferran. Arbitrary Lagrangian-Eulerian Methods. Encyclopedia of Computational Mechanics. New York: Wiley, 2004.Google Scholar
  42. 42.
    Driessen, N. J., C. V. Bouten, and F. P. Baaijens. A structural constitutive model for collagenous cardiovascular tissues incorporating the angular fiber distribution. J. Biomech. Eng. 127(3):494–503, 2005.CrossRefGoogle Scholar
  43. 43.
    Eckert, C. E., R. Fan, B. Mikulis, M. Barron, C. A. Carruthers, V. M. Friebe, et al. On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater. 9(1):4653–4660, 2013. doi: 10.1016/j.actbio.2012.09.031.CrossRefGoogle Scholar
  44. 44.
    Engelmayr, Jr, G. C., D. K. Hildebrand, F. W. Sutherland, J. E. Mayer, Jr, and M. S. Sacks. A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24(14):2523–2532, 2003.CrossRefGoogle Scholar
  45. 45.
    Engelmayr, G. C., and M. S. Sacks. A structural model for the flexural mechanics of nonwoven tissue engineering scaffolds. J. Biomech. Eng. 128:610–622, 2006.CrossRefGoogle Scholar
  46. 46.
    Ennker, J., A. Albert, and I. C. Ennker. Stentless aortic valves. Current aspects. HSR Proc. Intens. Care Cardiovasc. Anesthesia. 4(2):77–82, 2012.Google Scholar
  47. 47.
    Fan, R., and M. S. Sacks. Simulation of planar soft tissues using a structural constitutive model: finite element implementation and validation. J. Biomech. 47:2043–2054, 2014.CrossRefGoogle Scholar
  48. 48.
    Fata, B., C. A. Carruthers, G. Gibson, S. Watkins, D. Gottlieb, J. E. Mayer, Jr, et al. Regional structural and biomechanical alterations of the ovine main pulmonary artery during postnatal growth. J. Biomech. Eng. 135(2):0210221–02102211, 2013.CrossRefGoogle Scholar
  49. 49.
    Fata, B., W. Zhang, R. Amini, and M. Sacks. Insights into regional adaptations in the growing pulmonary artery using a meso-scale structural model: effects of ascending aorta impingement. J. Biomech. Eng. 2014. doi: 10.1115/1.4026457.Google Scholar
  50. 50.
    Freed, A. D., and T. C. Doehring. Elastic model for crimped collagen fibrils. J. Biomech. Eng. 127(4):587–593, 2005.CrossRefGoogle Scholar
  51. 51.
    Funder JA. Current status on stentless aortic bioprosthesis: a clinical and experimental perspective. Eur. J. Cardiothorac. Surg. 41(4):790–799, 2012. doi: 10.1093/ejcts/ezr141.CrossRefGoogle Scholar
  52. 52.
    Gabbay, S., U. Bortolotti, F. Wasserman, N. Tindel, S. M. Factor, and R. W. Frater. Long-term follow-up of the Ionescu-Shiley mitral pericardial xenograft. J. Thorac. Cardiovasc. Surg. 88(5 Pt 1):758–763, 1984.Google Scholar
  53. 53.
    Gao, B. Z., S. Pandya, C. Arana, and N. H. C. Hwang. Bioprosthetic heart valve leaflet deformation monitored by double-pulse stereo photogrammetry. Ann. Biomed. Eng. 30(1):11–18, 2002.CrossRefGoogle Scholar
  54. 54.
    Gao, Z. B., S. Pandya, N. Hosein, M. S. Sacks, and N. H. C. Hwang. Bioprosthetic heart valve leaflet motion monitored by dual camera stereo photogrammetry. J. Biomech. 33(2):199–207, 2000. doi: 10.1016/S0021-9290(99)00165-7.CrossRefGoogle Scholar
  55. 55.
    Garikipati, K., S. Göktepe, and C. Miehe. Elastica-based strain energy functions for soft biological tissue. J. Mech. Phys. Solids 56(4):1693–1713, 2008. doi: 10.1016/j.jmps.2007.07.005.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Ge, L., and F. Sotiropoulos. A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225(2):1782–1809, 2007.MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Gilmanov, A., T. B. Le, and F. Sotiropoulos. A numerical approach for simulating fluid structure interaction of flexible thin shells undergoing arbitrarily large deformations in complex domains. J. Comput. Phys. 300:814–843, 2015. doi: 10.1016/j.jcp.2015.08.008.MathSciNetCrossRefGoogle Scholar
  58. 58.
    Gilmanov, A., and F. Sotiropoulos. Comparative hemodynamics in an aorta with bicuspid and trileaflet valves. Theoret. Comput. Fluid Dyn. 30(1):67–85, 2015. doi: 10.1007/s00162-015-0364-7.Google Scholar
  59. 59.
    Gingold, R. A., and J. J. Monaghan. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181(3):375–389, 1977. doi: 10.1093/mnras/181.3.375.zbMATHCrossRefGoogle Scholar
  60. 60.
    Girardot, M. N., M. Torrianni, and J. M. Girardot. Effect of AOA on glutaraldehyde-fixed bioprosthetic heart vavlve cusps and walls: binding and calcification studies. Int. J. Artif. Organs 17:76–82, 1994.Google Scholar
  61. 61.
    Gloeckner, D. C., K. L. Billiar, and M. S. Sacks. Effects of mechanical fatigue on the bending properties of the porcine bioprosthetic heart valve. ASAIO J. 45(1):59–63, 1999. doi: 10.1097/00002480-199901000-00014.CrossRefGoogle Scholar
  62. 62.
    Gnyaneshwar, R., R. K. Kumar, and K. R. Balakrishnan. Dynamic analysis of the aortic valve using a finite element model. Ann. Thorac. Surg. 73(4):1122–1129, 2002.CrossRefGoogle Scholar
  63. 63.
    Go, A. S., D. Mozaffarian, V. L. Roger, E. J. Benjamin, J. D. Berry, M. J. Blaha, et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129(3):e28–e292, 2014. doi: 10.1161/01.cir.0000441139.02102.80.CrossRefGoogle Scholar
  64. 64.
    Go, A., D. Mozaffarian, V. Roger, E. Benjamin, J. Berry, W. Borden, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127(1):e6–e245, 2013.CrossRefGoogle Scholar
  65. 65.
    Gorman, 3rd, J. H., R. C. Gorman, B. M. Jackson, Y. Enomoto, M. G. St John-Sutton, and L. H. Edmunds, Jr. Annuloplasty ring selection for chronic ischemic mitral regurgitation: lessons from the ovine model. Ann. Thorac. Surg. 76(5):1556–1563, 2003.CrossRefGoogle Scholar
  66. 66.
    Gorman, 3rd, J. H., K. B. Gupta, J. T. Streicher, R. C. Gorman, B. M. Jackson, M. B. Ratcliffe, et al. Dynamic three-dimensional imaging of the mitral valve and left ventricle by rapid sonomicrometry array localization. J. Thorac. Cardiovasc. Surg. 112(3):712–726, 1996.CrossRefGoogle Scholar
  67. 67.
    Gould, P. L., A. Cataloglu, G. Dhatt, A. Chattopadhyay, and R. E. Clark. Stress analysis of the human aortic valve. Comput. Struct. 3(2):377–384, 1973.CrossRefGoogle Scholar
  68. 68.
    Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Stress variations in the human aortic root and valve: The role of anatomic asymmetry. Ann. Biomed. Eng. 26(4):534–545, 1998. doi: 10.1114/1.122.CrossRefGoogle Scholar
  69. 69.
    Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence in aging: a finite element model. J. Heart Valve Dis. 8(2):149–156, 1999.Google Scholar
  70. 70.
    Grande, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence: finite element modeling of aortic root dilatation. Ann. Thorac. Surg. 69(6):1851–1857, 2000.CrossRefGoogle Scholar
  71. 71.
    Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Re-creation of sinuses is important for sparing the aortic valve: a finite element study. J. Thorac. Cardiovasc. Surg. 119(4 Pt 1):753–763, 2000.CrossRefGoogle Scholar
  72. 72.
    Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J. Thorac. Cardiovasc. Surg. 122(5):946–954, 2001. doi: 10.1067/mtc.2001.116314.CrossRefGoogle Scholar
  73. 73.
    Grande-Allen, K. J., R. P. Cochran, P. G. Reinhall, and K. S. Kunzelman. Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness. IEEE Trans Biomed. Eng. 48(6):647–659, 2001. doi: 10.1109/10.923783.CrossRefGoogle Scholar
  74. 74.
    Grant, C. W., and B. G. Barrat-Boyes. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets. Ann. Thorac. Surg. 60(Supplement 2):S195–S199, 1995.Google Scholar
  75. 75.
    Grashow, J. S., M. S. Sacks, J. Liao, and A. P. Yoganathan. Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann. Biomed. Eng. 34(10):1509–1518, 2006.CrossRefGoogle Scholar
  76. 76.
    Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaixal stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2):315–325, 2006. doi: 10.1007/s10439-005-9027-y.CrossRefGoogle Scholar
  77. 77.
    Griffith, B. E. Immersed boundary model of aortic heart valve dynamics with physiological driving and loading conditions. Int. J. Numer. Methods Biomed. Eng. 28(3):317–345, 2012.MathSciNetzbMATHCrossRefGoogle Scholar
  78. 78.
    Hamid, M. S., H. N. Sabbah, and P. D. Stein. Comparison of finite-element stress-analysis of aortic-valve leaflet using either membrane elements or solid elements. Comput. Struct. 20(6):955–961, 1985. doi: 10.1016/0045-7949(85)90015-X.zbMATHCrossRefGoogle Scholar
  79. 79.
    Hamid, M. S., H. N. Sabbah, and P. D. Stein. Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J. Biomech. 19:759–769, 1986.CrossRefGoogle Scholar
  80. 80.
    Hamid, M. S., H. N. Sabbah, and P. D. Stein. Influence of stent height upon stresses on the cusps of closed bioprosthetic valves. J. Biomech. 19(9):759–769, 1986. doi: 10.1016/0021-9290(86)90199-5.CrossRefGoogle Scholar
  81. 81.
    Harada, Y., M. Kawada, K. Ishihara, M. Higashidate, H. Kurosawa, and Y. Imai. A new valved conduit with commissures using a glutaraldehyde preserved equine pericardium. Kyobu Geka. 42(6):457–459, 1989.Google Scholar
  82. 82.
    Harken, D. E., H. S. Soroff, W. J. Taylor, A. A. Lefemine, S. K. Gupta, and S. Lunzer. Partial and complete prostheses in aortic insufficiency. J. Thorac. Cardiovasc. Surg. 40:744–762, 1960.Google Scholar
  83. 83.
    Hiester, E. D., and M. S. Sacks. Optimal bovine pericardial tissue selection sites. I. Fiber architecture and tissue thickness measurements. J. Biomed. Mater. Res. 39(2):207–214, 1998.CrossRefGoogle Scholar
  84. 84.
    Hiester, E. D., and M. S. Sacks. Optimal bovine pericardial tissue selection sites. II. Cartographic analysis. J. Biomed. Mater. Res. 39(2):215–221, 1998.CrossRefGoogle Scholar
  85. 85.
    Hilbert, S. L., V. J. Ferrans, and W. M. Swanson. Optical methods for the nondestructive evaluation of collagen morphology in bioprosthetic heart valves. J. Biomed. Mater. Res. 20(9):1411–1421, 1986. doi: 10.1002/jbm.820200914.CrossRefGoogle Scholar
  86. 86.
    Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elasticity. 61(1–3):1–48, 2000. doi: 10.1023/A:1010835316564.MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Howard, I. C., E. A. Patterson, and A. Yoxall. On the opening mechanism of the aortic valve: some observations from simulations. J. Med. Eng. Technol. 27(6):259–266, 2003. doi: 10.1080/0309190031000096621.CrossRefGoogle Scholar
  88. 88.
    Hsu, M.-C., D. Kamensky, Y. Bazilevs, M. S. Sacks, and T. J. R. Hughes. Fluid-structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation. Comput. Mech. 54:1055–1071, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Hsu, M.-C., D. Kamensky, F. Xu, J. Kiendl, C. Wang, M. C. H. Wu, et al. Dynamic and fluid-structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 55:1211–1225, 2015.zbMATHCrossRefGoogle Scholar
  90. 90.
    Huang, X., M. M. Black, I. C. Howard, and E. A. Patterson. A two-dimensional finite element analysis of a bioprosthetic heart valve. J. Biomech. 23(8):753–762, 1990.CrossRefGoogle Scholar
  91. 91.
    Huang, H. Y., J. Liao, and M. S. Sacks. In-situ deformation of the aortic valve interstitial cell nucleus under diastolic loading. J. Biomech. Eng. 129(6):880–889, 2007. doi: 10.1115/1.2801670.CrossRefGoogle Scholar
  92. 92.
    Hughes, T. J. R., J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput. Methods Appl. Mech. Eng. 194:4135–4195, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  93. 93.
    Hughes, T. J. R., W. K. Liu, and T. K. Zimmermann. Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Comput. Method Appl. Mech. Eng. 29:329–349, 1981.MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    Humphrey, J. D. Cardiovascular solid mechanics: cells, tissues, and organs. Lightning Source: UKltd, 2002.CrossRefGoogle Scholar
  95. 95.
    Humphrey, J. D., R. K. Strumpf, and F. C. Yin. Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Eng. 112(3):333–339, 1990.CrossRefGoogle Scholar
  96. 96.
    Humphrey, J. D., R. K. Strumpf, and F. C. Yin. Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J Biomech Eng. 112(3):340–346, 1990.CrossRefGoogle Scholar
  97. 97.
    Humphrey, J. D., R. K. Strumpf, and F. C. Yin. A constitutive theory for biomembranes: application to epicardial mechanics. J. Biomech. Eng. 114(4):461–466, 1992.CrossRefGoogle Scholar
  98. 98.
    Humphrey, J. D., D. L. Vawter, and R. P. Vito. Mechanical behavior of excised canine visceral pleura. Ann. Biomed. Eng. 14(5):451–466, 1986.CrossRefGoogle Scholar
  99. 99.
    Iyengar, A. K. S., H. Sugimoto, D. B. Smith, and M. S. Sacks. Dynamic in vitro quantification of bioprosthetic heart valve leaflet motion using structured light projection. Ann. Biomed. Eng. 29(11):963–973, 2001.CrossRefGoogle Scholar
  100. 100.
    Jamieson, W. R. L. H., L. H. Burr, G. J. Fradet, R. T. Miyagishima, M. T. Janusz, and S. V. Lichtenstein. Carpentier-Edwards supraannular porcine bioprosthesis evaluation over 15 years. Ann. Thorac. Surg. 66(6 Suppl):S49–S52, 1998.CrossRefGoogle Scholar
  101. 101.
    Jennings, L. M., M. Butterfield, C. Booth, K. G. Watterson, and J. Fisher. The pulmonary bioprosthetic heart valve: its unsuitability for use as an aortic valve replacement. J. Heart Valve Dis. 11(5):668–678, 2002.Google Scholar
  102. 102.
    Johnson, A. A., and T. E. Tezduyar. Parallel Computation of Incompressible Flows with Complex Geometries. Int J Numer Meth Fl. 24:1321–1340, 1997.zbMATHCrossRefGoogle Scholar
  103. 103.
    Johnson, A. A., and T. E. Tezduyar. 3d simulation of fluid-particle interactions with the number of particles reaching 100. Comput. Method Appl. Mech. Eng. 145:301–321, 1997.zbMATHCrossRefGoogle Scholar
  104. 104.
    Johnson, A. A., and T. E. Tezduyar. Advanced mesh generation and update methods for 3D flow simulations. Comput. Mech. 23:130–143, 1999.zbMATHCrossRefGoogle Scholar
  105. 105.
    Jones, M., E. E. Eidbo, S. L. Hilbert, V. J. Ferrans, and R. E. Clark. Anticalcification treatments of bioprosthetic heart valves: in vivo studies in sheep. J. Card. Surg. 4(1):69–73, 1989.CrossRefGoogle Scholar
  106. 106.
    Jouan, J. Mitral valve repair over five decades. Ann. Cardiothorac. Surg. 4(4):322–334, 2015. doi: 10.3978/j.issn.2225-319X.2015.01.07.Google Scholar
  107. 107.
    Kamensky, D., M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, Y. Bazilevs, et al. An immersogeometric variational framework for fluid-structure interaction: Application to bioprosthetic heart valves. Comput. Method Appl. Mech. Eng. 284:1005–1053, 2015.MathSciNetCrossRefGoogle Scholar
  108. 108.
    Kiendl, J. Isogeometric Analysis and Shape Optimal Design of Shell Structures. Lehrstuhl für Statik: Technische Universität München, München, 2011.Google Scholar
  109. 109.
    Kiendl, J., K.-U. Bletzinger, J. Linhard, and R. Wüchner. Isogeometric shell analysis with Kirchhoff-Love elements. Comput. Method Appl. Mech. Eng. 198:3902–3914, 2009.MathSciNetzbMATHCrossRefGoogle Scholar
  110. 110.
    Kiendl, J., M.-C. Hsu, M. C. H. Wu, and A. Reali. Isogeometric Kirchhoff-Love shell formulations for general hyperelastic materials. Comput. Method Appl. Mech. Eng. 291:280–303, 2015.MathSciNetCrossRefGoogle Scholar
  111. 111.
    Kim, H., K. B. Chandran, M. S. Sacks, and J. Lu. An experimentally derived stress resultant shell model for heart valve dynamic simulations. Ann. Biomed. Eng. 35(1):30–44, 2007. doi: 10.1007/s10439-006-9203-8.CrossRefGoogle Scholar
  112. 112.
    Kim, H., J. Lu, M. S. Sacks, and K. B. Chandran. Dynamic simulation of bioprosthetic heart valves using a stress resultant shell model. Ann. Biomed. Eng. 36(2):262–275, 2008. doi: 10.1007/s10439-007-9409-4.CrossRefGoogle Scholar
  113. 113.
    Kronick, P. L., and M. S. Sacks. Matrix macromolecules that affect the viscoelasticity of calfskin. J Biomech Eng-T ASME. 116(2):140–145, 1994. doi: 10.1115/1.2895712.CrossRefGoogle Scholar
  114. 114.
    Krucinski, S., I. Vesely, M. A. Dokainish, and G. Campbell. Numerical simulation of leaflet flexure in bioprosthetic valves mounted on rigid and expansile stents. J. Biomech. 26(8):929–943, 1993.CrossRefGoogle Scholar
  115. 115.
    Kunzelman, K. S., D. R. Einstein, and R. P. Cochran. Fluid-structure interaction models of the mitral valve: function in normal and pathological states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362(1484):1393–1406, 2007. doi: 10.1098/rstb.2007.2123.CrossRefGoogle Scholar
  116. 116.
    Labrosse, M. R., C. J. Beller, M. Boodhwani, C. Hudson, and B. Sohmer. Subject-specific finite-element modeling of normal aortic valve biomechanics from 3D + t TEE images. Med. Image Anal. 20(1):162–172, 2015. doi: 10.1016/j.media.2014.11.003.CrossRefGoogle Scholar
  117. 117.
    Lanir, Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat collagenous tissues. J. Biomech. 12(6):423–436, 1979.CrossRefGoogle Scholar
  118. 118.
    Lanir, Y. Plausibility of structural constitutive equations for swelling tissues–implications of the C-N and S-E conditions. J. Biomech. Eng. 118(1):10–16, 1996.CrossRefGoogle Scholar
  119. 119.
    Leat, M. E., and J. Fisher. Comparative-study of the function of the abiomed polyurethane heart-valve for use in left-ventricular assist devices. J. Biomed. Eng. 15(6):516–520, 1993. doi: 10.1016/0141-5425(93)90068-A.CrossRefGoogle Scholar
  120. 120.
    Lee, J. M., and D. R. Boughner. Tissue mechanics of canine pericardium in different test environments. Circ. Res. 49:533–544, 1981.CrossRefGoogle Scholar
  121. 121.
    Lee, J. M., D. R. Boughner, and D. W. Courtman. The glutaraldehyde-stabilized porcine aortic valve xenograft. II. Effect of fixation with or without pressure on the tensile viscoelastic properties of the leaflet material. J. Biomed. Mater. Res. 18:79–98, 1984.CrossRefGoogle Scholar
  122. 122.
    Lee, J. M., S. A. Haberer, and D. R. Boughner. The bovine pericardial xenograft: I. Effect of fixation in aldehydes without constraint on the tensile properties of bovine pericardium. J. Biomed. Mater. Res. 23:457–475, 1989.CrossRefGoogle Scholar
  123. 123.
    Lee, C.-H., W. Zhang, J. Liao, C. A. Carruthers, J. I. Sacks, and M. S. Sacks. On the presence of affine fibril and fiber kinematics in the mitral valve anterior leaflet. Biophys. J. 108(8):2074–2087, 2015. doi: 10.1016/j.bpj.2015.03.019.CrossRefGoogle Scholar
  124. 124.
    Leeson-Dietrich, J., D. Boughner, and I. Vesely. Porcine pulmonary and aortic valves: a comparison of their tensile viscoelastic properties at physiological strain rates. J. Heart Valve Dis. 4:88–94, 1995.Google Scholar
  125. 125.
    Leon, M. B., C. R. Smith, M. J. Mack, R. R. Makkar, L. G. Svensson, S. K. Kodali, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. New Engl. J. Med. 2016. doi: 10.1056/NEJMoa1514616.Google Scholar
  126. 126.
    Li, J., X. Y. Luo, and Z. B. Kuang. A nonlinear anisotropic model for porcine aortic heart valves. J. Biomech. 34(10):1279–1289, 2001. doi: 10.1016/S0021-9290(01)00092-6.CrossRefGoogle Scholar
  127. 127.
    Li, K., and W. Sun. Simulated thin pericardial bioprosthetic valve leaflet deformation under static pressure-only loading conditions: implications for percutaneous valves. Ann. Biomed. Eng. 38(8):2690–2701, 2010. doi: 10.1007/s10439-010-0009-3.CrossRefGoogle Scholar
  128. 128.
    Liao, J., E. M. Joyce, and M. S. Sacks. Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29(8):1065–1074, 2008. doi: 10.1016/j.biomaterials.2007.11.007.CrossRefGoogle Scholar
  129. 129.
    Liao, J., L. Yang, J. Grashow, and M. S. Sacks, editors. Collagen fibril kinematics in mitral valve leaflet under biaxial elongation, creep, and stress relaxation. Society for Heart Valve Disease Third Biennial Meeting, 2005; Vancouver: SHVD.Google Scholar
  130. 130.
    Liao, J., L. Yang, J. Grashow, and M. S. Sacks. The relation between collagen fibril kinematics and mechanical properties in the mitral valve anterior leaflet. J. Biomech. Eng. 129(1):78–87, 2007. doi: 10.1115/1.2401186.CrossRefGoogle Scholar
  131. 131.
    Lo, D., and I. Vesely. Biaxial strain analysis of the porcine aortic valve. Ann. Thorac. Surg. 60(2 Suppl):S374–S378, 1995.CrossRefGoogle Scholar
  132. 132.
    Lovekamp, J. J., D. T. Simionescu, J. J. Mercuri, B. Zubiate, M. S. Sacks, and N. R. Vyavahare. Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials 27(8):1507–1518, 2006. doi: 10.1016/j.biomaterials.2005.08.003.CrossRefGoogle Scholar
  133. 133.
    Maestro, M. M., J. Turnay, N. Olmo, P. Fernández, D. Suárez, J. M. García Páez, et al. Biochemical and mechanical behavior of ostrich pericardium as a new biomaterial. Acta Biomater. 2(2):213–219, 2006.CrossRefGoogle Scholar
  134. 134.
    Makhijani, V. B., H. Q. Yang, P. J. Dionne, and M. J. Thubrikar. Three-dimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic valve function. ASAIO J. 43(5):M387–M392, 1997.CrossRefGoogle Scholar
  135. 135.
    Mako, W. J., and I. Vesely. In vivo and in vitro models of calcification in porcine aortic valve cusps. J. Heart Valve Dis. 6(3):316–323, 1997.Google Scholar
  136. 136.
    Martin, C., and W. Sun. Biomechanical characterization of aortic valve tissue in humans and common animal models. J. Biomed. Mater. Res. A 100(6):1591–1599, 2012.CrossRefGoogle Scholar
  137. 137.
    Mercuri, J. J., J. J. Lovekamp, D. T. Simionescu, and N. R. Vyavahare. Glycosaminoglycan-targeted fixation for improved bioprosthetic heart valve stabilization. Biomaterials 28(3):496–503, 2007. doi: 10.1016/j.biomaterials.2006.09.005.CrossRefGoogle Scholar
  138. 138.
    Merryman, W. D., H. Y. Huang, F. J. Schoen, and M. S. Sacks. The effects of cellular contraction on aortic valve leaflet flexural stiffness. J. Biomech. 39(1):88–96, 2006.CrossRefGoogle Scholar
  139. 139.
    Michler, C., H. van Brummelen, and R. de Borst. An investigation of Interface-GMRES(R) for fluid-structure interaction problems with flutter and divergence. Comput. Mech. 47(1):17–29, 2011.MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    Mirnajafi, A., J. M. Raymer, L. R. McClure, and M. S. Sacks. The flexural rigidity of the aortic valve leaflet in the commissural region. J. Biomech. 39(16):2966–2973, 2006. doi: 10.1016/j.jbiomech.2005.10.026.CrossRefGoogle Scholar
  141. 141.
    Mirnajafi, A., J. Raymer, M. J. Scott, and M. S. Sacks. The effects of collagen fiber orientation on the flexural properties of pericardial heterograft biomaterials. Biomaterials 26(7):795–804, 2005. doi: 10.1016/j.biomaterials.2004.03.004.CrossRefGoogle Scholar
  142. 142.
    Mirnajafi, A., B. Zubiate, and M. S. Sacks. Effects of cyclic flexural fatigue on porcine bioprosthetic heart valve heterograft biomaterials. J. Biomed. Mater. Res. A. 94(1):205–213, 2010. doi: 10.1002/jbm.a.32659.CrossRefGoogle Scholar
  143. 143.
    Mittal, R., and G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech. 37:239–261, 2005.MathSciNetzbMATHCrossRefGoogle Scholar
  144. 144.
    Moore, M. A., R. E. Phillips, Jr, B. K. McIlroy, V. M. Walley, and P. J. Hendry. Evaluation of porcine valves prepared by dye-mediated photooxidation. Ann. Thorac. Surg. 66(6 Suppl):S245–S248, 1998.CrossRefGoogle Scholar
  145. 145.
    Morganti, S., F. Auricchio, D. J. Benson, F. I. Gambarin, S. Hartmann, T. J. R. Hughes, et al. Patient-specific isogeometric structural analysis of aortic valve closure. Comput. Method Appl. M. 284:508–520, 2015.MathSciNetCrossRefGoogle Scholar
  146. 146.
    Mozaffarian, D., E. J. Benjamin, A. S. Go, D. K. Arnett, M. J. Blaha, M. Cushman, et al. Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322, 2015. doi: 10.1161/CIR.0000000000000152.CrossRefGoogle Scholar
  147. 147.
    Neethling, W. M., S. Cooper, J. J. Van Den Heever, J. Hough, and A. J. Hodge. Evaluation of kangaroo pericardium as an alternative substitute for reconstructive cardiac surgery. J. Cardiovasc. Surg. 43(3):301–306, 2002.Google Scholar
  148. 148.
    Parry, D. A. The molecular and fibrillar structure of collagen and its relationship to the mechanical properties of connective tissue. Biophys. Chem. 29(1–2):195–209, 1988.CrossRefGoogle Scholar
  149. 149.
    Patterson, E. A., I. C. Howard, and M. A. Thornton. A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J. Med. Eng. Technol. 20(3):95–108, 1996. doi: 10.3109/03091909609008387.CrossRefGoogle Scholar
  150. 150.
    Payne, D. M., H. P. Koka, P. J. Karanicolas, M. W. Chu, A. D. Nagpal, M. Briel, et al. Hemodynamic performance of stentless versus stented valves: a systematic review and meta-analysis. J. Card. Surg. 23(5):556–564, 2008. doi: 10.1111/j.1540-8191.2008.00705.x.CrossRefGoogle Scholar
  151. 151.
    Pereira, C. A., J. M. Lee, and S. A. Haberer. Effect of alternative crosslinking methods on the low strain rate viscoelastic properties of bovine pericardial bioprosthetic material. J. Biomed. Mater. Res. 24:345–361, 1990.CrossRefGoogle Scholar
  152. 152.
    Perez de Arenaza, D., B. Lees, M. Flather, F. Nugara, T. Husebye, M. Jasinski, et al. Randomized comparison of stentless versus stented valves for aortic stenosis: effects on left ventricular mass. Circulation 112(17):2696–2702, 2005. doi: 10.1161/CIRCULATIONAHA.104.521161.CrossRefGoogle Scholar
  153. 153.
    Peskin, C. S. Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2):252–271, 1972.zbMATHCrossRefGoogle Scholar
  154. 154.
    Pibarot, P., and J. G. Dumesnil. Valvular heart disease: changing concepts in disease management. Circulation 119:1034–1048, 2009.CrossRefGoogle Scholar
  155. 155.
    Pouch, A., S. Tian, M. Takabe, H. Wang, J. Yuan, A. Cheung, et al. Segmentation of the aortic valve apparatus in 3D echocardiographic images: deformable modeling of a branching medial structure. In: Statistical Atlases and Computational Models of the Heart—Imaging and Modelling Challenges, edited by O. Camara, T. Mansi, M. Pop, K. Rhode, M. Sermesant, and A. Young. Lecture Notes in Computer Science: Springer International Publishing, 2015, pp. 196–203.Google Scholar
  156. 156.
    Quinonez, L. G., R. Breitbart, W. Tworetsky, J. E. Lock, A. C. Marshall, and S. M. Emani. Stented bovine jugular vein graft (Melody valve) for surgical mitral valve replacement in infants and children. J. Thorac. Cardiovasc. Surg. 148(4):1443–1449, 2014. doi: 10.1016/j.jtcvs.2013.10.059.CrossRefGoogle Scholar
  157. 157.
    Rabkin, E., S. P. Hoerstrup, M. Aikawa, J. E. Mayer, Jr, and F. J. Schoen. Evolution of cell phenotype and extracellular matrix in tissue-engineered heart valves during in vitro maturation and in vivo remodeling. J. Heart Valve Dis. 11(3):308–314, 2002.Google Scholar
  158. 158.
    Roger, V. L., A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D. Berry, W. B. Borden, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220, 2012. doi: 10.1161/CIR.0b013e31823ac046.CrossRefGoogle Scholar
  159. 159.
    Ross, D. N. Replacement of aortic and mitral valves with a pulmonary autograft. Lancet 2(7523):956–958, 1967.CrossRefGoogle Scholar
  160. 160.
    Rousseau, E. P. M., A. A. Vansteenhoven, J. D. Janssen, and H. A. Huysmans. A mechanical analysis of the closed hancock heart-valve prosthesis. J. Biomech. 21(7):545–562, 1988. doi: 10.1016/0021-9290(88)90218-7.CrossRefGoogle Scholar
  161. 161.
    Sacks, M. S. A structural constitutive model for chemically treated planar tissues under biaxial loading. Comput. Mech. 26(3):243–249, 2000. doi: 10.1007/S004660000175.zbMATHCrossRefGoogle Scholar
  162. 162.
    Sacks, M. S. Incorporation of experimentally-derived fiber orientation into a structural constitutive model for planar-collagenous tissues. J. Biomech. Eng. T ASME 125(2):280–287, 2003. doi: 10.1115/1.1544508.CrossRefGoogle Scholar
  163. 163.
    Sacks, M. S., and C. J. Chuong. Orthotropic mechanical properties of chemically treated bovine pericardium. Ann. Biomed. Eng. 26(5):892–902, 1998. doi: 10.1114/1.135.CrossRefGoogle Scholar
  164. 164.
    Sacks, M. S., Y. Enomoto, J. R. Graybill, W. D. Merryman, A. Zeeshan, A. P. Yoganathan, et al. In-vivo dynamic deformation of the mitral valve anterior leaflet. Ann. Thorac. Surg. 82(4):1369–1377, 2006. doi: 10.1016/j.athoracsur.2006.03.117.CrossRefGoogle Scholar
  165. 165.
    Sacks, M. S., A. Mirnajafi, W. Sun, and P. Schmidt. Bioprosthetic heart valve heterograft biomaterials: structure, mechanical behavior and computational simulation. Expert Rev. Med. Devic. 3(6):817–834, 2006. doi: 10.1586/17434440.3.6.817.CrossRefGoogle Scholar
  166. 166.
    Sacks, M. S., and F. J. Schoen. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J. Biomed. Mater. Res. 62(3):359–371, 2002.CrossRefGoogle Scholar
  167. 167.
    Sacks, M. S., F. J. Schoen, and J. E. Mayer. Bioengineering challenges for heart valve tissue engineering. Annu. Rev. Biomed. Eng. 11:289–313, 2009. doi: 10.1146/annurev-bioeng-061008-124903.CrossRefGoogle Scholar
  168. 168.
    Sacks, M. S., D. B. Smith, and E. D. Hiester. A small angle light scattering device for planar connective tissue microstructural analysis. Ann. Biomed. Eng. 25(4):678–689, 1997.CrossRefGoogle Scholar
  169. 169.
    Sacks, M. S., and W. Sun. Multiaxial mechanical behavior of biological materials. Annu. Rev. Biomed. Eng. 5:251–284, 2003. doi: 10.1146/Annurev.Bioeng.5.011303.120714.CrossRefGoogle Scholar
  170. 170.
    Sacks, M. S., W. Zhang, and S. Wognum. A novel fibre-ensemble level constitutive model for exogenous cross-linked collagenous tissues. Interface Focus. 6(1):20150090, 2016. doi: 10.1098/rsfs.2015.0090.CrossRefGoogle Scholar
  171. 171.
    Salgo, I. S., J. H. Gorman, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002. doi: 10.1161/01.Cir.0000025426.39426.83.CrossRefGoogle Scholar
  172. 172.
    Salmasi, M. Y., M. Acharya, N. Humayun, D. Baskaran, S. Hubbard, and H. Vohra. Is valve repair preferable to valve replacement in ischaemic mitral regurgitation? A systematic review and meta-analysis. Eur. J. Cardiothorac. Surg. 2016. doi: 10.1093/ejcts/ezw053.Google Scholar
  173. 173.
    Sasaki, N., and S. Odajima. Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of structural hierarchy. J. Biomech. 29(9):1131–1136, 1996.CrossRefGoogle Scholar
  174. 174.
    Sasaki, N., and S. Odajima. Stress-strain curve and Young’s modulus of a collagen molecule as determined by the X-ray diffraction technique. J. Biomech. 29:655–658, 1996.CrossRefGoogle Scholar
  175. 175.
    Sauren, A. A., M. C. van Hout, A. A. van Steenhoven, F. E. Veldpaus, and J. D. Janssen. The mechanical properties of porcine aortic valve tissues. J. Biomech. 16(5):327–337, 1983.CrossRefGoogle Scholar
  176. 176.
    Schoen, F. Aortic valve structure-function correlations: Role of elastic fibers no longer a stretch of the imagination. J. Heart Valve Dis. 6:1–6, 1997.MathSciNetGoogle Scholar
  177. 177.
    Schoen, F. J. Pathologic findings in explanted clinical bioprosthetic valves fabricated from photooxidized bovine pericardium. J. Heart Valve Dis. 7(2):174–179, 1998.MathSciNetGoogle Scholar
  178. 178.
    Schoen, F. J., J. Fernandez, L. Gonzalezlavin, and A. Cernaianu. Causes of failure and pathological findings in surgically removed ionescu-shiley standard bovine pericardial heart-valve bioprostheses—emphasis on progressive structural deterioration. Circulation 76(3):618–627, 1987.CrossRefGoogle Scholar
  179. 179.
    Siddiqui, R. F., J. R. Abraham, and J. Butany. Bioprosthetic heart valves: modes of failure. Histopathology 55(2):135–144, 2009.CrossRefGoogle Scholar
  180. 180.
    Simo, J. C., and D. D. Fox. On a stress resultant geometrically exact shell-model. 1. Formulation and optimal parametrization. Comput. Method Appl. Mech. Eng. 72(3):267–304, 1989. doi: 10.1016/0045-7825(89)90002-9.MathSciNetzbMATHCrossRefGoogle Scholar
  181. 181.
    Simo, J. C., D. D. Fox, and M. S. Rifai. On a stress resultant geometrically exact shell-model. 3. computational aspects of the nonlinear-theory. Comput. Method Appl. Mech. Eng. 79(1):21–70, 1990. doi: 10.1016/0045-7825(90)90094-3.MathSciNetzbMATHCrossRefGoogle Scholar
  182. 182.
    Smith, D. B., M. S. Sacks, P. M. Pattany, and R. Schroeder. High-resolution magnetic resonance imaging to characterize the geometry of fatigued porcine bioprosthetic heart valves. J. Heart Valve Dis. 6(4):424–432, 1997.Google Scholar
  183. 183.
    Smith, D. B., M. S. Sacks, P. M. Pattany, and R. Schroeder. Fatigue-induced changes in bioprosthetic heart valve three-dimensional geometry and the relation to tissue damage. J. Heart Valve Dis. 8(1):25–33, 1999.Google Scholar
  184. 184.
    Sotiropoulos, F., and I. Borazjani. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Compu. 47(3):245–256, 2009. doi: 10.1007/s11517-009-0438-z.CrossRefGoogle Scholar
  185. 185.
    Sotiropoulos, F., and X. Yang. Immersed boundary methods for simulating fluid-structure interaction. Prog. Aerosp. Sci. 65:1–21, 2014.CrossRefGoogle Scholar
  186. 186.
    Sripathi, V. C., R. K. Kumar, and K. R. Balakrishnan. Further insights into normal aortic valve function: Role of a compliant aortic root on leaflet opening and valve orifice area. Ann. Thorac. Surg. 77(3):844–851, 2004. doi: 10.1016/S0003-4975(03)01518-2.CrossRefGoogle Scholar
  187. 187.
    Starr, A. The artificial heart valve. Nat. Med. 13:1160–1164, 2007.CrossRefGoogle Scholar
  188. 188.
    Stella, J. A., J. Liao, and M. S. Sacks. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J. Biomech. 40(14):3169–3177, 2007. doi: 10.1016/j.jbiomech.2007.04.001.CrossRefGoogle Scholar
  189. 189.
    Stock, U. A., T. Sakamoto, S. Hatsuoka, D. P. Martin, M. Nagashima, A. M. Moran, et al. Patch augmentation of the pulmonary artery with bioabsorbable polymers and autologous cell seeding. J Thorac Cardiovasc Surg. 120(6):1158–1167, 2000; (discussion 68).CrossRefGoogle Scholar
  190. 190.
    Stradins, P., R. Lacis, I. Ozolanta, B. Purina, V. Ose, L. Feldmane, et al. Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur. J. Cardiothorac. Surg. 26(3):634–639, 2004.CrossRefGoogle Scholar
  191. 191.
    Sturla, F., E. Votta, M. Stevanella, C. A. Conti, and A. Redaelli. Impact of modeling fluid-structure interaction in the computational analysis of aortic root biomechanics. MedEngPhys. 35:1721–1730, 2013.Google Scholar
  192. 192.
    Sugimoto, H., and M. S. Sacks. Effects of leaflet stiffness on in vitro dynamic bioprosthetic heart valve leaflet shape. Cardiovasc. Eng. Technol. 4(1):2–15, 2013.CrossRefGoogle Scholar
  193. 193.
    Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6):905–914, 2005.CrossRefGoogle Scholar
  194. 194.
    Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model Mechan. 4(2–3):190–199, 2005. doi: 10.1007/S10237-005-0075-X.CrossRefGoogle Scholar
  195. 195.
    Sun, W., M. S. Sacks, and M. J. Scott. Effects of boundary conditions on the estimation of the planar biaxial mechanical properties of soft tissues. J. Biomech. Eng. T ASME 127(4):709–715, 2005. doi: 10.1115/1.1933931.CrossRefGoogle Scholar
  196. 196.
    Sun, W., M. S. Sacks, T. L. Sellaro, W. S. Slaughter, and M. J. Scott. Biaxial mechanical response of bioprosthetic heart valve biomaterials to high in-plane shear. J. Biomech. Eng. 125:372–380, 2003.CrossRefGoogle Scholar
  197. 197.
    Sung, H. W., Y. Chang, C. T. Chiu, C. N. Chen, and H. C. Liang. Crosslinking characteristics and mechanical properties of a bovine pericardium fixed with a naturally occurring crosslinking agent. J. Biomed. Mater. Res. 47(2):116–126, 1999.CrossRefGoogle Scholar
  198. 198.
    Sung, H. W., Y. Chang, C. T. Chiu, C. N. Chen, and H. C. Liang. Mechanical properties of a porcine aortic valve fixed with a naturally occurring crosslinking agent. Biomaterials 20(19):1759–1772, 1999.CrossRefGoogle Scholar
  199. 199.
    Sung, H. W., W. H. Chang, C. Y. Ma, and M. H. Lee. Crosslinking of biological tissues using genipin and/or carbodiimide. J. Biomed. Mater. Res. 63(3):427–438, 2003.CrossRefGoogle Scholar
  200. 200.
    Sutherland, F. W., T. E. Perry, Y. Yu, M. C. Sherwood, E. Rabkin, Y. Masuda, et al. From stem cells to viable autologous semilunar heart valve. Circulation 111(21):2783–2791, 2005.CrossRefGoogle Scholar
  201. 201.
    Takizawa, K., C. Moorman, S. Wright, J. Christopher, and T. E. Tezduyar. Wall shear stress calculations in space-time finite element computation of arterial fluid-structure interactions. Comput. Mech. 46:31–41, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  202. 202.
    Takizawa, K., T. E. Tezduyar, A. Buscher, and S. Asada. Space-time interface-tracking with topology change (ST-TC). Comput. Mech. 54(4):955–971, 2013.MathSciNetzbMATHCrossRefGoogle Scholar
  203. 203.
    Takizawa, K., T. Tezduyar, A. Buscher, and S. Asada. Space-time fluid mechanics computation of heart valve models. Comput. Mech. 54(4):973–986, 2014.MathSciNetzbMATHCrossRefGoogle Scholar
  204. 204.
    Tepole, A. B., H. Kabaria, K.-U. Bletzinger, and E. Kuhl. Isogeometric Kirchhoff-Love shell formulations for biological membranes. Comput. Method Appl. Mech. Eng. 293:328–347, 2015.MathSciNetCrossRefGoogle Scholar
  205. 205.
    Tezduyar, T. E. Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods F. 43:555–575, 2003.MathSciNetzbMATHCrossRefGoogle Scholar
  206. 206.
    Tezduyar, T., S. Aliabadi, M. Behr, A. Johnson, and S. Mittal. Massively parallel finite element computation of 3D flows—mesh update strategies in computation of moving boundaries and interfaces. Parallel Computational Fluid Dynamics. New Trends and Advances. 1995; pp. 21–30.Google Scholar
  207. 207.
    Tezduyar, T. E., M. Behr, and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I1 The concept and the preliminary numerical tests. Comput. Method Appl. Mech. Eng. 94(3):339–351, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  208. 208.
    Tezduyar, T. E., M. Behr, S. Mittal, and J. Liou. A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II1 Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Method Appl. Mech. Eng. 94(3):353–371, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  209. 209.
    Thornton, M. A., L. C. Howard, and E. A. Patterson. Three-dimensional stress analysis of polypropylene leaflets for prosthetic heart valves. Med. Eng. Phys. 19(6):588–597, 1997. doi: 10.1016/S1350-4533(96)00042-2.CrossRefGoogle Scholar
  210. 210.
    Thubrikar, M. The Aortic Valve. Boca Raton: CRC, 1990.Google Scholar
  211. 211.
    Thubrikar, M. J., J. D. Deck, J. Aouad, and S. P. Nolan. Role of mechanical stress in calcification of aortic bioprosthetic valves. J. Thorac. Cardiovasc. Surg. 86(1):115–125, 1983.Google Scholar
  212. 212.
    Thubrikar, M. J., J. L. Heckman, and S. P. Nolan. High speed cine-radiographic study of aortic valve leaflet motion. J. Heart Valve Dis. 2(6):653–661, 1993.Google Scholar
  213. 213.
    Thubrikar, M. J., J. R. Skinner, R. T. Eppink, and S. P. Nolan. Stress analysis of porcine bioprosthetic heart valves in vivo. J. Biomed. Mater. Res. 16(6):811–826, 1982. doi: 10.1002/jbm.820160607.CrossRefGoogle Scholar
  214. 214.
    Toma, M., M. O. Jensen, D. R. Einstein, A. P. Yoganathan, R. P. Cochran, and K. S. Kunzelman. Fluid-structure interaction analysis of papillary muscle forces using a comprehensive mitral valve model with 3D chordal structure. Ann. Biomed. Eng. 2015. doi: 10.1007/s10439-015-1385-5.Google Scholar
  215. 215.
    Tong, P., and Y. C. Fung. The stress-strain relationship for the skin. J. Biomech. 9(10):649–657, 1976.CrossRefGoogle Scholar
  216. 216.
    Trowbridge, E. A., and C. E. Crofts. Pericardial heterograft valves: an assessment of leaflet stresses and their implications for heart valve design. J. Biomed. Eng. 9(4):345–355, 1987.CrossRefGoogle Scholar
  217. 217.
    Trowbridge, E. A., P. V. Lawford, and C. E. Crofts. Pericardial heterografts: a comparative study of suture pull-out and tissue strength. J. Biomed. Eng. 11(4):311–314, 1989.CrossRefGoogle Scholar
  218. 218.
    van Brummelen, E. H. Added mass effects of compressible and incompressible flows in fluid-structure interaction. J. Appl. Mech. 76:021206, 2009.CrossRefGoogle Scholar
  219. 219.
    van Loon, R. A 3D method for modelling the fluid-structure interaction of heart valves (Ph.D. thesis). Eindhoven: Technische Universiteit Eindhoven, 2005.Google Scholar
  220. 220.
    van Loon, R. Towards computational modelling of aortic stenosis. Int. J. Numer. Methods Biomed. Eng. 26:405–420, 2010.MathSciNetzbMATHCrossRefGoogle Scholar
  221. 221.
    van Loon, R., P. D. Anderson, and F. N. van de Vosse. A fluid-structure interaction method with solid-rigid contact for heart valve dynamics. J. Comput. Phys. 217:806–823, 2006.MathSciNetzbMATHCrossRefGoogle Scholar
  222. 222.
    Vesely, I. The role of elastin in aortic valve mechanics. J. Biomech. 31(2):115–123, 1998.CrossRefGoogle Scholar
  223. 223.
    Vesely, I., J. E. Barber, and N. B. Ratliff. Tissue damage and calcification may be independent mechanisms of bioprosthetic heart valve failure. J. Heart Valve Dis. 10(4):471–477, 2001.Google Scholar
  224. 224.
    Vesely, I., and D. Boughner. Analysis of the bending behaviour of porcine xenograft leaflets and of neutral aortic valve material: bending stiffness, neutral axis and shear measurements. J. Biomech. 22(6–7):655–671, 1989.CrossRefGoogle Scholar
  225. 225.
    Vesely, I., and R. Noseworthy. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J. Biomech. 25(1):101–113, 1992.CrossRefGoogle Scholar
  226. 226.
    Vyavahare, N., M. Ogle, F. J. Schoen, R. Zand, D. C. Gloeckner, M. S. Sacks, et al. Mechanisms of bioprosthetic heart valve failure: Fatigue causes collagen denaturation and glycosaminoglycan loss. J. Biomed. Mater. Res. 46:44–50, 1999.CrossRefGoogle Scholar
  227. 227.
    Wells, S. M., and M. S. Sacks. Effects of fixation pressure on the biaxial mechanical behavior of porcine bioprosthetic heart valves with long-term cyclic loading. Biomaterials 23(11):2389–2399, 2002.CrossRefGoogle Scholar
  228. 228.
    Wiegner, A. W., O. H. Bing, T. K. Borg, and J. B. Caulfield. Mechanical and structural correlates of canine pericardium. Circ. Res. 49(3):807–814, 1981.CrossRefGoogle Scholar
  229. 229.
    Wilber, J. P., and J. R. Walton. The convexity properties of a class of constitutive models for biological soft issues. Math. Mech. Solids 7(3):217–235, 2002. doi: 10.1177/108128602027726.MathSciNetzbMATHCrossRefGoogle Scholar
  230. 230.
    Wu, W., D. Pott, B. Mazza, T. Sironi, E. Dordoni, C. Chiastra, et al. Fluid-structure interaction model of a percutaneous aortic valve: comparison with an in vitro test and feasibility study in a patient-specific case. Ann. Biomed. Eng. 44(2):590–603, 2016. doi: 10.1007/s10439-015-1429-x.CrossRefGoogle Scholar
  231. 231.
    Yahia, L. H., and G. Drouin. Microscopical investigation of canine anterior cruciate ligament and patellar tendon: collagen fascicle morphology and architecture. J. Orthop. Res. 7(2):243–251, 1989. doi: 10.1002/jor.1100070212.CrossRefGoogle Scholar
  232. 232.
    Ye, Q., G. Zund, S. Jockenhoevel, S. P. Hoerstrup, A. Schoeberlein, J. Grunenfelder, et al. Tissue engineering in cardiovascular surgery: new approach to develop completely human autologous tissue. Eur. J. Cardiothorac. Surg. 17(4):449–454, 2000.CrossRefGoogle Scholar
  233. 233.
    Zhang, W., S. Ayoub, J. Liao, and M. S. Sacks. On the mechanical role of collagen and elastin fibers in the layers of the mitral heart valve leaflet. J. Mech. Behav. Biomed. Mater., in press.Google Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • Joao S. Soares
    • 1
  • Kristen R. Feaver
    • 1
  • Will Zhang
    • 1
  • David Kamensky
    • 1
  • Ankush Aggarwal
    • 1
    • 2
  • Michael S. Sacks
    • 1
  1. 1.Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, Department of Biomedical EngineeringThe University of Texas at AustinAustinUSA
  2. 2.College of EngineeringSwansea UniversitySwanseaUK

Personalised recommendations