Microstructured Nickel-Titanium Thin Film Leaflets for Hybrid Tissue Engineered Heart Valves Fabricated by Magnetron Sputter Deposition

  • K. Loger
  • A. Engel
  • J. Haupt
  • R. Lima de Miranda
  • G. Lutter
  • E. QuandtEmail author


Heart valves are constantly exposed to high dynamic loading and are prone to degeneration. Therefore, it is a challenge to develop a durable heart valve substitute. A promising approach in heart valve engineering is the development of hybrid scaffolds which are composed of a mechanically strong inorganic mesh enclosed by valvular tissue. In order to engineer an efficient, durable and very thin heart valve for transcatheter implantations, we developed a fabrication process for microstructured heart valve leaflets made from a nickel-titanium (NiTi) thin film shape memory alloy. To examine the capability of microstructured NiTi thin film as a matrix scaffold for tissue engineered hybrid heart valves, leaflets were successfully seeded with smooth muscle cells (SMCs). In vitro pulsatile hydrodynamic testing of the NiTi thin film valve leaflets demonstrated that the SMC layer significantly improved the diastolic sufficiency of the microstructured leaflets, without affecting the systolic efficiency. Compared to an established porcine reference valve model, magnetron sputtered NiTi thin film material demonstrated its suitability for hybrid tissue engineered heart valves.


NiTi thin film scaffold Hybrid heart valve leaflets Shape memory alloy Magnetron sputter deposition 



Project funding by the Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged.

Conflict of interest

Authors Klaas Loger, Alexander Engel and Jessica Haupt declare that they have no conflict of interest. Author Rodrigo Lima de Miranda is partner of the Acquandas GmbH (Kiel) and holds several patents on shape memory thin films techniques. Author Eckhard Quandt reports funding of the project by the German Research Foundation (DFG). He is partner of the Acquandas GmbH (Kiel) and holds several patents on shape memory thin films techniques. Author Georg Lutter reports funding of the project by the German Research Foundation (DFG) and the German Center for Heart and Circulation (DZHK).

Human and Animal Rights

No human or animal studies were carried out by the authors for this article.


  1. 1.
    Alavi, S., and A. Kheradvar. Metal mesh scaffold for tissue engineering of membranes. Tissue Eng. Part C 18(4):293–301, 2012.CrossRefGoogle Scholar
  2. 2.
    Alavi, S., and A. Kheradvar. A hybrid tissue-engineered heart valve. Ann. Thorac. Surg. 99:2183–2187, 2015.CrossRefGoogle Scholar
  3. 3.
    Alavi, S., W. Liu, and A. Kheradvar. Inflammatory response assessment of a hybrid tissue-engineered heart valve leaflet. Ann. Biomed. Eng. 41:316–326, 2013.CrossRefGoogle Scholar
  4. 4.
    Arjunon, S., S. Rathan, H. Jo, and A. Yoganathan. Aortic valve: mechanical environment and mechanobiology. Ann. Biomed. Eng. 41(7):1331–1346, 2013.CrossRefGoogle Scholar
  5. 5.
    Bechtold, C., R. Lima de Miranda, and E. Quandt. Capability of sputtered micro-patterned NiTi thick films. Shap Mem. Superelast. 1(3):286–293, 2015.CrossRefGoogle Scholar
  6. 6.
    Chluba, C., W. Ge, R. Lima de Miranda, J. Strobel, L. Kienle, E. Quandt, and M. Wuttig. Ultralow-fatigue shape memory alloy films. Science 348(6238):1004–1007, 2015.CrossRefGoogle Scholar
  7. 7.
    Haaf, P., M. Steiner, T. Attmann, G. Pfister, J. Cremer, and G. Lutter. A novel pulse duplicator system: evaluation of different valve prostheses. Thorac. Cardiov. Surg. 57:10–17, 2009.CrossRefGoogle Scholar
  8. 8.
    Habijan, T., R. Lima de Miranda, C. Zamponi, E. Quandt, C. Greulich, T. Schildhauer, and M. Köller. The biocompatibility and mechanical properties of cylindrical NiTi thin films produced by magnetron sputtering. Mater. Sci. Eng. C 32(8):2523–2528, 2012.CrossRefGoogle Scholar
  9. 9.
    Harken, D. E., W. Taylor, A. Lefemine, S. Lunzer, H. Low, M. Cohen, and J. Jacobey. Aortic valve replacement with a caged ball valve. J. Am. Cardiol. 9:292–299, 1962.CrossRefGoogle Scholar
  10. 10.
    Hinderer, S., J. Seifert, M. Votteler, N. Shenb, J. Rheinlaender, T. Schäffer, and K. Schenke-Layland. Engineering of a bio-functionalized hybrid off-the-shelf heart valve. Biomaterials 35(7):2130–2139, 2014.CrossRefGoogle Scholar
  11. 11.
    Lima de Miranda, R., C. Zamponi, and E. Quandt. Micropatterned freestanding superelastic TiNi films. Adv. Eng. Mater. 15(1–2):66–69, 2013.CrossRefGoogle Scholar
  12. 12.
    Loger, K., R. Lima de Miranda, A. Engel, M. Marczynski-Bühlow, G. Lutter, and E. Quandt. Fabrication and evaluation of nitinol thin film heart valves. Cardiovasc. Eng. Technol. 5(4):308–316, 2014.CrossRefGoogle Scholar
  13. 13.
    Meltzer, A., and D. Stoeckel. Function and performance of Nitinol vascular implants. Open Med. Dev. J. 2(2):32–41, 2010.CrossRefGoogle Scholar
  14. 14.
    Merryman, W., I. Youn, H. Lukoff, P. Krueger, F. Guilak, R. Hopkins, and M. Sacks. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am. J. Physiol. Heart Circ. Physiol. 290:H224–H231, 2006.CrossRefGoogle Scholar
  15. 15.
    Metzner, A., U. Stock, K. Iino, G. Fischer, T. Huemme, J. Boldt, J. Braesen, B. Bein, J. Renner, J. Cremer, and G. Lutter. Percutaneous pulmonary valve replacement: autologous tissue-engineered valved stents. Cardiovasc. Res. 88(3):453–461, 2010.CrossRefGoogle Scholar
  16. 16.
    Pibarot, P., and J. Dumesnil. Prosthetic heart valves selection of the optimal prosthesis and long-term management. Circulation 119:1034–1048, 2009.CrossRefGoogle Scholar
  17. 17.
    Plimpton, W. Liu, and A. Kheradvar. Immunological and phenotypic considerations in supplementing cardiac biomaterials with cells. In: Biomaterials for Cardiac Regeneration, edited by M. Ruel, and E. Suuronen. Switzerland: Springer, 2015, pp. 239–273.Google Scholar
  18. 18.
    Ryhänen, J. Biocompatibility evolution of nickel-titanium shape memory alloy. Finland: Faculty of Medicine, University of Oulu, 1999.Google Scholar
  19. 19.
    Schoen, F. Future directions in tissue heart valves: impact of recent insights from biology and pathology. J. Heart Valve Dis. 8(4):350–358, 1999.Google Scholar
  20. 20.
    Schoen, F., and R. Levy. Pathology of substitute heart valves. J. Card. Surg. 9:222–227, 1994.CrossRefGoogle Scholar
  21. 21.
    Shabalovskaya, S. Surface, corrosion and biocompatibility aspects of nitinol as an implant material. Bio-Med. Mater. Eng. 12(1):69–109, 2002.Google Scholar
  22. 22.
    Siekmeyer, G., A. Schüßler, R. Lima de Miranda, and E. Quandt. Comparison of the fatigue performance of comercially produced samples versus sputter-deposited NiTi. J. Mater. Eng. Perform. 23(7):2437–2445, 2014.CrossRefGoogle Scholar
  23. 23.
    Stepan, L., D. Levi, and G. Carman. A thin film nitinol heart valve. J. Biomech. Eng. 127(6):915–918, 2005.CrossRefGoogle Scholar
  24. 24.
    Stock, U., and K. Schenke-Layland. Performance of decellularized xenogeneic tissue in heart valve replacement. Biomaterials 27(1):1–2, 2006.CrossRefGoogle Scholar
  25. 25.
    Wohlschlögel, M., R. Lima de Miranda, A. Schüßler, and E. Quandt. Nitinol: tubing versus sputtered film–microcleanliness and corrosion behavior. J. Biomed. Mater. Res. B 2015. doi: 10.1002/jbm.b.33449.Google Scholar

Copyright information

© Biomedical Engineering Society 2016

Authors and Affiliations

  • K. Loger
    • 1
  • A. Engel
    • 2
  • J. Haupt
    • 2
  • R. Lima de Miranda
    • 1
    • 3
  • G. Lutter
    • 2
  • E. Quandt
    • 1
  1. 1.Faculty of Engineering, Chair for Inorganic Functional Materials, Institute for Materials ScienceUniversity of KielKielGermany
  2. 2.Department of Cardiovascular SurgeryUniversity Hospital of Schleswig-HolsteinKielGermany
  3. 3.ACQUANDAS GmbHKielGermany

Personalised recommendations