Advertisement

Cardiovascular Engineering and Technology

, Volume 6, Issue 3, pp 340–351 | Cite as

Particle Image Velocimetry Used to Qualitatively Validate Computational Fluid Dynamic Simulations in an Oxygenator: A Proof of Concept

  • Peter C. SchlansteinEmail author
  • Felix Hesselmann
  • Sebastian V. Jansen
  • Jeannine Gemsa
  • Tim A. Kaufmann
  • Michael Klaas
  • Dorothee Roggenkamp
  • Wolfgang Schröder
  • Thomas Schmitz-Rode
  • Ulrich Steinseifer
  • Jutta Arens
Article

Abstract

Computational fluid dynamics (CFD) is used to simulate blood flow inside the fiber bundles of oxygenators. The results are interpreted in terms of flow distribution, e.g., stagnation and shunt areas. However, experimental measurements that provide such information on the local flow between the fibers are missing. A transparent model of an oxygenator was built to perform particle image velocimetry (PIV), to perform the experimental validation. The similitude theory was used to adjust the size of the PIV model to the minimal resolution of the PIV system used (scale factor 3.3). A standard flow of 80 mL/min was simulated with CFD for the real oxygenator and the equivalent flow of 711 mL/min, according to the similitude theory, was investigated with PIV. CFD predicts the global size of stagnation and shunt areas well, but underestimates the streamline length and changes in velocities due to the meandering flow around the real fibers in the PIV model. Symmetrical CFD simulation cannot consider asymmetries in the flow, due to manufacturing-related asymmetries in the fiber bundle. PIV could be useful for validation of CFD simulations; measurement quality however must be improved for a quantitative validation of CFD results and the investigation of flow effects such as tortuosity and anisotropic flow behavior.

Keywords

PIV CFD Hollow fiber membrane Porous media Experimental flow visualization Artificial lung Artificial placenta 

Notes

Acknowledgments

This research project is supported by an I3TM-Grant through the RWTH Aachen University. The authors have no proprietary interests in this paper.

Conflict of interest

All authors declare that they have no conflict of interest.

Statement of Human Studies

No human studies were carried out by the authors for this article.

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

References

  1. 1.
    Arens, J., H. Schnöring, F. Reisch, J. F. Vázquez-Jiménez, T. Schmitz-Rode, and U. Steinseifer. Development of a miniaturized heart-lung machine for neonates with congenital heart defect. ASAIO J. 54(5):509–513, 2008.CrossRefGoogle Scholar
  2. 2.
    Arens, J., M. Schoberer, A. Lohr, T. Orlikowsky, M. Seehase, R. K. Jellema, J. J. Collins, B. W. Kramer, T. Schmitz-Rode, and U. Steinseifer. NeonatOx: a pumpless extracorporeal lung support for premature neonates. Artif. Organs 35(11):997–1001, 2011.CrossRefGoogle Scholar
  3. 3.
    Bhavsar, S. S., T. Schmitz-Rode, and U. Steinseifer. Numerical modeling of anisotropic fiber bundle behavior in oxygenators. Artif. Organs 35(11):1095–1102, 2011.CrossRefGoogle Scholar
  4. 4.
    Funakubo, A., I. Taga, J. W. McGillicuddy, Y. Fukui, and R. B. Hirschl. Flow vectorial analysis in an artificial implantable lung. ASAIO J. 49:383–387, 2003.Google Scholar
  5. 5.
    Graefe, R., R. Borchardt, J. Arens, P. Schlanstein, T. Schmitz-Rode, and U. Steinseifer. Improving oxygenator performance using computational simulation and flow field-based parameters. Artif. Organs 34(11):930–936, 2010.CrossRefGoogle Scholar
  6. 6.
    Hirano, A., K. Yamamoto, M. Matsuda, M. Inoue, S. Nagao, K. Kuwana, M. Kamiya, and K. Sakai. Flow uniformity in oxygenators with different outlet port design. ASAIO J. 55(3):209–212, 2009.CrossRefGoogle Scholar
  7. 7.
    Jones, C. C., M. J. McDonough, P. Capasso, D. Wang, K. S. Rosenstein, and J. B. Zwischenberger. Improved computational fluid dynamic simulations of blood flow in membrane oxygenators from X-ray imaging. Ann. Biomed. Eng. 41:2088–2098, 2013.CrossRefGoogle Scholar
  8. 8.
    Mazaheri, A. R., and G. Ahmadi. Uniformity of the fluid flow velocities within hollow fiber membranes of blood oxygenation devices. Artif. Organs 30(1):10–15, 2006.CrossRefGoogle Scholar
  9. 9.
    Schoberer, M., J. Arens, A. Erben, D. Ophelders, R. K. Jellema, B. W. Kramer, J. L. Bruse, P. Brouwer, T. Schmitz-Rode, U. Steinseifer, and T. Orlikowsky. Miniaturization: the clue to clinical application of the artificial placenta. Artif. Organs 38(3):208–214, 2014.CrossRefGoogle Scholar
  10. 10.
    Schoberer, M., J. Arens, A. Lohr, M. Seehase, R. K. Jellema, J. J. Collins, B. W. Kramer, T. Schmitz-Rode, U. Steinseifer, and T. Orlikowsky. Fifty years of work on the artificial placenta: milestones in the history of extracorporeal support of the premature newborn. Artif. Organs 36(6):512–516, 2012.CrossRefGoogle Scholar
  11. 11.
    Sonntag, S. J., W. Li, M. Becker, W. Kaestner, M. R. Büsen, N. Marx, D. Merhof, and U. Steinseifer. Combined computational and experimental approach to improve the assessment of mitral regurgitation by echocardiography. Ann. Biomed. Eng. 42:971–985, 2014.CrossRefGoogle Scholar
  12. 12.
    Wu, Z. J., B. Gellman, T. Zhang, M. E. Taskin, K. A. Dasse, and B. P. Griffith. Computational fluid dynamics and experimental characterization of the pediatric pump-lung. Cardiovasc. Eng. Technol. 2(4):276–287, 2011.CrossRefGoogle Scholar
  13. 13.
    Wu, Z. J., M. E. Taskin, T. Zhang, K. H. Fraser, and B. P. Griffith. Computational model-based design of a wearable artificial pump-lung for cardiopulmonary/respiratory support. Artif. Organs 36(4):387–399, 2012.CrossRefGoogle Scholar
  14. 14.
    Zhang, J., T. D. C. Nolan, T. Zhang, B. P. Griffith, and Z. J. Wu. Characterization of membrane blood oxygenation devices using computational fluid dynamics. J. Membr. Sci. 288:268–279, 2007.CrossRefGoogle Scholar
  15. 15.
    Zhang, J., M. E. Taskin, A. Koert, T. Zhang, B. Gellman, K. A. Dasse, R. J. Gilbert, B. P. Griffith, and Z. J. Wu. Computational design and in vitro characterization of an integrated maglev pump-oxygenator. Artif. Organs 33:805–817, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2015

Authors and Affiliations

  • Peter C. Schlanstein
    • 1
    Email author
  • Felix Hesselmann
    • 1
  • Sebastian V. Jansen
    • 1
  • Jeannine Gemsa
    • 1
  • Tim A. Kaufmann
    • 1
  • Michael Klaas
    • 2
  • Dorothee Roggenkamp
    • 2
  • Wolfgang Schröder
    • 2
  • Thomas Schmitz-Rode
    • 1
  • Ulrich Steinseifer
    • 1
  • Jutta Arens
    • 1
  1. 1.Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz InstituteRWTH Aachen UniversityAachenGermany
  2. 2.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany

Personalised recommendations