Cardiovascular Engineering and Technology

, Volume 5, Issue 1, pp 110–118 | Cite as

Correlation of Hemodynamic Parameters to Endothelial Cell Proliferation in an End to Side Anastomosis

  • Leonard D. Browne
  • Siobhan O’Callaghan
  • David A. Hoey
  • Philip Griffin
  • Timothy M. McGloughlin
  • Michael T. WalshEmail author


A strong correlation between the localization of atherosclerotic lesions with abnormal wall shear stress (WSS) has long been recognized at the distal anastomosis of a peripheral bypass where disturbed flow occurs. Identification of a WSS variable that significantly contributes to disease formation at this site has been elusive to date, as endothelial cell (EC) response to the abnormal hemodynamics at this anastomotic junction has yet to be quantitatively characterized. In vitro experiments were performed exposing human aortic ECs to pulsatile flow variables appropriate to a distal bypass graft junction using a novel in vitro device. Computational fluid dynamics was employed to detail the hemodynamic variables of this flow chamber. These variables were then correlated to EC proliferation which was used as an indicator of intimal hyperplasia (IH) development. Under pulsatile flow, maximum absolute temporal WSS gradient was found to be the parameter that most significantly correlated to EC proliferation (p = 0.0001, r = 0.8947). This metric can be utilized as an indicator to detect arterial segments prone to the initiation and localization of IH, it may also be used to help optimize the surgical construction of coronary artery bypass, peripheral bypass and arteriovenous anastomotic junctions to improve patient outcomes.


Pulsatile flow Shear stress Intimal hyperplasia Temporal shear stress gradient Bypass graft 



The author would like to acknowledge Enterprise Ireland, The Irish Research Council for Science Engineering and Technology (IRCSET) and the Nerem Laboratory at the Institute for Bioengineering and Bioscience at Georgia Institute of Technology.

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical Standards

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.


  1. 1.
    Bao, X., C. B. Clark, and J. A. Frangos. Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43. Am. J. Physiol. Heart Circ. Physiol. 278:H1598–H1605, 2000.Google Scholar
  2. 2.
    Bao, X., C. Lu, and J. A. Frangos. Temporal gradient in shear but not steady shear stress induces PDGF-A and MCP-1 expression in endothelial cells: role of NO, NF B, and egr-1. Arterioscler. Thromb. Vasc. Biol. 19:996–1003, 1999.CrossRefGoogle Scholar
  3. 3.
    Barbee, K. Role of subcellular shear–stress distributions in endothelial cell mechanotransduction. Ann. Biomed. Eng. 30:472–482, 2002.CrossRefGoogle Scholar
  4. 4.
    Bassiouny, H. S., S. White, S. Glagov, E. Choi, D. P. Giddens, and C. K. Zarins. Anastomotic intimal hyperplasia: mechanical injury or flow induced. J. Vasc. Surg. 15:708–717, 1992.CrossRefGoogle Scholar
  5. 5.
    Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49:2379–2393, 2007.CrossRefGoogle Scholar
  6. 6.
    Chien, S. Molecular and mechanical bases of focal lipid accumulation in arterial wall. Prog. Biophys. Mol. Biol. 83:131–151, 2003.CrossRefGoogle Scholar
  7. 7.
    Haidekker, M. A., C. R. White, and J. A. Frangos. Analysis of temporal shear stress gradients during the onset phase of flow over a backward-facing step. J. Biomech. Eng. 123:455, 2001.CrossRefGoogle Scholar
  8. 8.
    Haruguchi, H., and S. Teraoka. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review. J. Artif. Organs 6:227–235, 2003.CrossRefGoogle Scholar
  9. 9.
    Hofer, M., G. Rappitsch, K. Perktold, W. Trubel, and H. Schima. Numerical study of wall mechanics and fluid dynamics in end-to-side anastomoses and correlation to intimal hyperplasia. J. Biomech. 29:1297–1308, 1996.CrossRefGoogle Scholar
  10. 10.
    Keynton, R. S., M. M. Evancho, R. L. Sims, N. V. Rodway, A. Gobin, and S. E. Rittgers. Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J. Biomech. Eng. 123:464–473, 2001.CrossRefGoogle Scholar
  11. 11.
    Klein, W. M., L. W. Bartels, L. Bax, Y. van der Graaf, and W. P. T. M. Mali. Magnetic resonance imaging measurement of blood volume flow in peripheral arteries in healthy subjects. J. Vasc. Surg. 38:1060–1066, 2003.CrossRefGoogle Scholar
  12. 12.
    Kornet, L., A. P. G. Hoeks, J. Lambregts, and R. S. Reneman. In the femoral artery bifurcation, differences in mean wall shear stress within subjects are associated with different intima-media thicknesses. Arterioscler. Thromb. Vasc. Biol. 19:2933–2939, 1999.CrossRefGoogle Scholar
  13. 13.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5:293–302, 1985.CrossRefGoogle Scholar
  14. 14.
    Kute, S. M., and D. A. Vorp. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study. J. Biomech. Eng. 123:277, 2001.CrossRefGoogle Scholar
  15. 15.
    Lei, M., J. P. Archie, and C. Kleinstreuer. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. J. Vasc. Surg. 25:637–646, 1997.CrossRefGoogle Scholar
  16. 16.
    Li, Y.-S. J., J. H. Haga, and S. Chien. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38:1949–1971, 2005.CrossRefGoogle Scholar
  17. 17.
    Longest, P. W., and C. Kleinstreuer. Particle-hemodynamics modeling of the distal end-to-side femoral bypass: effects of graft caliber and graft-end cut. Med. Eng. Phys. 25:843–858, 2003.CrossRefGoogle Scholar
  18. 18.
    Michiels, C. Endothelial cell functions. J. Cell. Physiol. 196:430–443, 2003.CrossRefGoogle Scholar
  19. 19.
    Nagel, T., N. Resnick, C. F. Dewey, and M. A. Gimbrone. Vascular endothelial cells respond to spatial gradients in fluid shear stress by enhanced activation of transcription factors. Arterioscler. Thromb. Vasc. Biol. 19:1825–1834, 1999.CrossRefGoogle Scholar
  20. 20.
    O’Brien, T., M. Walsh, and T. McGloughlin. Altering end-to-side anastomosis junction hemodynamics: the effects of flow-splitting. Med. Eng. Phys. 28:727–733, 2006.CrossRefGoogle Scholar
  21. 21.
    Ojha, M. Wall shear stress temporal gradient and anastomotic intimal hyperplasia. Circ. Res. 74:1227–1231, 1994.CrossRefGoogle Scholar
  22. 22.
    Passerini, A. G., A. Milsted, and S. E. Rittgers. Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned vascular endothelial cells. J. Vasc. Surg. 37:182–190, 2003.CrossRefGoogle Scholar
  23. 23.
    Perktold, K., A. Leuprecht, M. Prosi, T. Berk, M. Czerny, W. Trubel, and H. Schima. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses. Ann. Biomed. Eng. 30:447–460, 2002.CrossRefGoogle Scholar
  24. 24.
    Tardy, Y., N. Resnick, T. Nagel, M. A. Gimbrone, and C. F. Dewey. Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation–migration–loss cycle. Arterioscler. Thromb. Vasc. Biol. 17:3102–3106, 1997.CrossRefGoogle Scholar
  25. 25.
    Walsh, M. T., E. G. Kavanagh, T. O’Brien, P. A. Grace, and T. McGloughlin. On the existence of an optimum end-to-side junctional geometry in peripheral bypass surgery–a computer generated study. Eur. J. Vasc. Endovasc. Surg. 26:649–656, 2003.CrossRefGoogle Scholar
  26. 26.
    White, C. R., and J. A. Frangos. The shear stress of it all: the cell membrane and mechanochemical transduction. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 362:1459–1467, 2007.CrossRefGoogle Scholar
  27. 27.
    White, C. R., M. Haidekker, X. Bao, and J. A. Frangos. Temporal gradients in shear, but not spatial gradients, stimulate endothelial cell proliferation. Circulation 103:2508–2513, 2001.CrossRefGoogle Scholar
  28. 28.
    White, C. R., H. Y. Stevens, M. Haidekker, and J. A. Frangos. Temporal gradients in shear, but not spatial gradients, stimulate ERK1/2 activation in human endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 289:2350–2355, 2005.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Leonard D. Browne
    • 1
  • Siobhan O’Callaghan
    • 1
  • David A. Hoey
    • 1
  • Philip Griffin
    • 1
  • Timothy M. McGloughlin
    • 1
  • Michael T. Walsh
    • 1
    Email author
  1. 1.Department of Mechanical, Aeronautical & Biomedical Engineering, Centre for Applied Biomedical Engineering Research (CABER), Materials and Surface Science InstituteUniversity of LimerickLimerickIreland

Personalised recommendations