Cardiovascular Engineering and Technology

, Volume 4, Issue 4, pp 485–499 | Cite as

Numerical Evaluation and Experimental Validation of Pressure Drops Across a Patient-Specific Model of Vascular Access for Hemodialysis

  • Lorenzo Botti
  • Koen Van Canneyt
  • Rado Kaminsky
  • Tom Claessens
  • Robrecht Nils Planken
  • Pascal Verdonck
  • Andrea Remuzzi
  • Luca Antiga


In this work we investigated the possibility to predict the pressure drops across a patient-specific arterio-venous fistula (AVF) by means of an open-source hemodynamics solver aimed at convection-dominated incompressible flows. To account for the very high flow rates that develop in AVFs we considered a wide range of steady input flow conditions (corresponding to Reynolds numbers 100, 200, 550, 1000, 1500, and 2000), and compared with experiments for over 200 flow rates, up to Reynolds 2000. Three meshes for the numerical model, based on a micro-CT acquisition of the in vitro silicon model, were generated, in order to perform a h-refinement study and assess the mesh density allowing to correctly estimate the losses across the anastomosis. For the sake of validation, in addition to pressure assessment, the velocity solutions for Re 550 and 1000 were compared with particle image velocimetry (PIV) acquisitions. Once the solver was validated we also simulated pulsatile input flow conditions to investigate the role of pulsatility in predicting pressure drops. When the finer grid is considered almost all the experimental values for the pressure drop vs. flow measurements are within the standard deviation range of the numerical pressure drops. For the PIV validation, a good agreement is observed between in vitro data and numerical results. The ability to simulate unstable convection-dominated flows in complex 3D geometries is demonstrated and more insight is obtained about the non-common physiological flow conditions induced by fistula creation.


Hemodynamics High-flow rate hemodynamics Anastomosis Arterio-venous fistula 


  1. 1.
    Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11):1097–1112, 2008.Google Scholar
  2. 2.
    Asif, A., C. Leon, D. Merrill, B. Bhimani, R. Ellis, M. Ladino, and F. N. Gadalean. Arterial steal syndrome: a modest proposal for an old paradigm. Am. J. Kidney Dis. 48(1):88–97, 2006. doi:10.1053/j.ajkd.2006.03.077 .Google Scholar
  3. 3.
    Balay, S., K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-10/03 - Revision 3.1, Argonne National Laboratory, 2010.Google Scholar
  4. 4.
    Benzi, M., G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numer. 14:1–137, 2005. MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Botti, L. Gnuid, A dG–cG pressure-correction incompressible Navier–Stokes solver for hemodynamics, 2009.
  6. 6.
    Botti, L., and D. A. Di Pietro. A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230:572–585, 2011.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Caroli, A., S. Manini, L. Antiga, K. Passera, B. Ene-Iordache, S. Rota, G. Remuzzi, A. Bode, J. Leermakers, F. N. van de Vosse, R. Vanholder, M. Malovrh, J. Tordoir, and A. Remuzzi. Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int., 2013. doi:10.1038/ki.2013.188.
  8. 8.
    Cezeaux, J., and A. van Grondelle. Accuracy of the inverse Womersley method for the calculation of hemodynamic variables. Ann. Biomed. Eng. 25(3):536–546, 1997.CrossRefGoogle Scholar
  9. 9.
    Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37(7):1310–1321, 2009. doi:10.1007/s10439-009-9697-y.Google Scholar
  10. 10.
    Cheung, S. C. P., K. K. L. Wong, G. H. Yeoh, W. Yang, J. Tu, R. Beare, and T. Phan. Experimental and numerical study on the hemodynamics of stenosed carotid bifurcation. Aust. Phys. Eng. Sci. Med. 33(4):319–328, 2010. doi:10.1007/s13246-010-0050-4.
  11. 11.
    Day, S. W., and J. C. McDaniel. PIV measurements of flow in a centrifugal blood pump: steady flow. J. Biomech. Eng. 127(2):244–253, 2005.CrossRefGoogle Scholar
  12. 12.
    Day, S. W., and J. C. McDaniel. PIV measurements of flow in a centrifugal blood pump: time-varying flow. J. Biomech. Eng. 127(2):254–263, 2005.CrossRefGoogle Scholar
  13. 13.
    Di Pietro, D. A., and A. Ern. Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comp. 79:1303–1330, 2010.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth,and D. A. Steinman. PIV-measured versus cfd-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2):021–015, 2008. doi:10.1115/1.2900724.Google Scholar
  15. 15.
    Giridharan, G. A., C. Lederer, A. Berthe, L. Goubergrits, J. Hutzenlaub, M. S. Slaughter, R. D. Dowling, P. A. Spence, and S. C. Koenig. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med. Eng. Phys. 33(10):1193–1202, 2011. doi:10.1016/j.medengphy.2011.05.008.Google Scholar
  16. 16.
    Gresho, P. M., and R. L. Sani. Incompressible Flow and the Finite Element Method, vol. 2, Chap. 3.13. New York: Wiley, pp. 704–707, 1998.Google Scholar
  17. 17.
    Guermond, J. L., P. Minev, and J. Shen. An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195:6011–6045, 2006.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Guermond, J. L., and L. Quartapelle. On stability and convergence of projection methods based on pressure poisson equation. Int. J. Num. Methods Fluids 26:1039–1053, 1998.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Hariharan, P., M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, S. F. C. Stewart, M. R. Myers, M. R. Berman, G. W. Burgreen, E. G. Paterson, and R. A. Malinauskas. Multilaboratory particle image velocimetry analysis of the fda benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. 133(4):041,002, 2011. doi:10.1115/1.4003440.Google Scholar
  20. 20.
    Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of cfd simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128(6):844–851, 2006. doi:10.1115/1.2354209.Google Scholar
  21. 21.
    Huberts, W., A. S. Bode, W. Kroon, R. N. Planken, J. H. M. Tordoir, F. N. van de Vosse, and E. M. H. Bosboom. A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med. Eng. Phys. 34(2):233–248, 2012. doi:10.1016/j.medengphy.2011.07.015.Google Scholar
  22. 22.
    Kaminsky, R., K. Dumont, H. Weber, M. Schroll, and P. Verdonck. PIV validation of blood-heart valve leaflet interaction modelling. Int. J. Artif. Organs 30(7):640–648, 2007.Google Scholar
  23. 23.
    Kaminsky, R., U. Morbiducci, M. Rossi, L. Scalise, P. Verdonck, and M. Grigioni. Time-resolved piv technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics. Int. J. Artif. Organs 30(2):153–162, 2007.Google Scholar
  24. 24.
    Karniadakis, G. E., and S. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford: Oxford University Press, 2005.Google Scholar
  25. 25.
    Karypis, G., and V. Kumar. METIS, a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical Report Version 4.0, University of Minnesota, Department of Computer Science/Army HPC Research Center, 1998.Google Scholar
  26. 26.
    Kharboutly, Z., V. Deplano, E. Bertrand and C. Legallais. Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis. Med. Eng. Phys. 32(2):111–118, 2010. doi:10.1016/j.medengphy.2009.10.013.
  27. 27.
    Khodarahmi, I., M. Shakeri, M. Sharp, and A. A. Amini. Using piv to determine relative pressures in a stenotic phantom under steady flow based on the pressure-poisson equation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:2594–2597, 2010. doi:10.1109/IEMBS.2010.5626676.
  28. 28.
    Kirk, B., J. W. Peterson, R. H. Stogner, and G. F. Carey. libmesh: A c++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22:237–254, 2006.CrossRefGoogle Scholar
  29. 29.
    Loth, F., P. Fischer, N. Arslan, C. Bertram, S. Lee, T. Royston, W. Shaalan, and H. Bassiouny. Transitional flow at the venous anastomosis of an arteriovenous graft: potential activation of the erk1/2 mechanotransduction pathway. J. Biomech. Eng. 125(1), 2003.
  30. 30.
    Manning, K. B., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif. Organs 27(9):840–846, 2003.Google Scholar
  31. 31.
    Mareels, G., R. Kaminsky, S. Eloot, and P. R. Verdonck. Particle image velocimetry-validated, computational fluid dynamics-based design to reduce shear stress and residence time in central venous hemodialysis catheters. ASAIO J. 53(4):438–446, 2007. doi:10.1097/MAT.0b013e3180683b7c.Google Scholar
  32. 32.
    Medvitz, R. B., V. Reddy, S. Deutsch, K. B. Manning, and E. G. Paterson. Validation of a cfd methodology for positive displacement lvad analysis using piv data. J. Biomech. Eng. 131(11):111,009, 2009. doi:10.1115/1.4000116.Google Scholar
  33. 33.
    Morsy, A. H., M. Kulbaski, C. Chen, H. Isiklar, and A. B. Lumsden. Incidence and characteristics of patients with hand ischemia after a hemodialysis access procedure. J. Surg. Res. 74(1):8–10, 1998. doi:10.1006/jsre.1997.5206.Google Scholar
  34. 34.
    Stanislas, K., K. Okamoto, C. Kahler, J. Westerweel, and F. Scarano. Main results of the third international challenge. Exp. Fluids 45:27–71, 2008.CrossRefGoogle Scholar
  35. 35.
    Temam, R. Sur l’approximation de la solution des équations de navier–stokes par la méthode des pas fractionnaires. Arch. Ration. Mesh. Anal. 33:377–385, 1969.MathSciNetMATHGoogle Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Lorenzo Botti
    • 1
  • Koen Van Canneyt
    • 2
  • Rado Kaminsky
    • 3
  • Tom Claessens
    • 3
  • Robrecht Nils Planken
    • 4
  • Pascal Verdonck
    • 2
  • Andrea Remuzzi
    • 5
  • Luca Antiga
    • 6
  1. 1.Department of Industrial EngineeringUniversity of BergamoDalmineItaly
  2. 2.IBiTech—bioMMedaGhent UniversityGhentBelgium
  3. 3.BiomechUniversity College GhentGhentBelgium
  4. 4.Department of RadiologyAcademic Medical CenterAmsterdamThe Netherlands
  5. 5.Biomedical Engineering DepartmentMario Negri InstituteBergamoItaly
  6. 6.OROBIX s.r.l.BergamoItaly

Personalised recommendations