Cardiovascular Engineering and Technology

, Volume 4, Issue 4, pp 291–308

Computer Simulations in Stroke Prevention: Design Tools and Virtual Strategies Towards Procedure Planning

  • Francesco Iannaccone
  • Matthieu De Beule
  • Benedict Verhegghe
  • Patrick Segers


Stroke is a heterogeneous disease caused by a sustained interruption of the blood supply to part of the brain. Prevention and treatment of this disease is of primary importance as it has been estimated to be the second leading cause of death worldwide. Due to the large number of possible origins there is no general strategy for preventive treatment and evidence based recommendations are given. However major causes of stroke can be confined to few vascular districts. More and more evidence is supporting the hypothesis that biomechanical and hemodynamic parameters can be related to catastrophic cerebrovascular events. In this context structural and fluidodynamic computer simulations offer an optimal tool to quantify these predictors. On the other hand the advances in medical imaging allow providing realistic in vivo conditions (such as reliable anatomical geometries and initial mechanical state) for patient specific analysis. This paper reviews the progress and the state of art of numerical simulation used to analyze the early stages and the progression of the disease as well as their potential as tool for risk assessment, for treatment outcome and procedure planning.


Stroke Numerical simulations Plaque rupture Cerebral aneurysm Intracranial atherosclerosis 


  1. 1.
    Adame, I. M., R. J. van der Geest, B. A. Wasserman, M. A. Mohamed, J. H. C. Reiber, and B. P. F. Lelieveldt. Automatic segmentation and plaque characterization in atherosclerotic carotid artery MR images. Magn. Reson. Mater. Phys. Biol. Med. 16(5):227–234, 2004.Google Scholar
  2. 2.
    Ahmed, S., I. D. Šutalo, and H. Kavnoudias. Hemodynamics and stress distribution in a cerebral aneurysm partially blocked with coils. In: Proceedings of the 5th International Conference on CFD in the Process Industries. CSIRO, 2006, pp. 13–15.Google Scholar
  3. 3.
    Ahmed, S., I. D. Šutalo, H. Kavnoudias, and A. Madan. Fluid structure interaction modelling of a patient specific cerebral aneurysm: effect of hypertension and modulus of elasticity. In: 16th Australasian Fluid Mechanics Conference, Crown Plaza, Gold Coast Australia, 2007, pp. 2–7.Google Scholar
  4. 4.
    Albers, G. W., P. Amarenco, J. D. Easton, R. L. Sacco, and P. Teal. Antithrombotic and thrombolytic therapy for ischemic stroke: the seventh ACCP conference on antithrombotic and thrombolytic therapy. Chest 126(3 suppl):483S–512S, 2004.Google Scholar
  5. 5.
    Alnæs, M. S., J. Isaksen, K.-A. Mardal, B. Romner, M. K. Morgan, and T. Ingebrigtsen. Computation of hemodynamics in the circle of willis. Stroke 38(9):2500–2505, 2007.Google Scholar
  6. 6.
    Antiga, L., B. Ene-Iordache, L. Caverni, G. Paolo Cornalba, and A. Remuzzi. Geometric reconstruction for computational mesh generation of arterial bifurcations from CT angiography. Comput. Med. Imaging Graph. 26(4):227–235, 2002.Google Scholar
  7. 7.
    Antiga, L., B. Ene-Iordache, and A. Remuzzi. Computational geometry for patient-specific reconstruction and meshing of blood vessels from MR and CT angiography. IEEE Trans. Med. Imaging 22(5):674–684, 2003.Google Scholar
  8. 8.
    Appanaboyina, S., F. Mut, R. Löhner, C. M. Putman, and J. R. Cebral. Computational fluid dynamics of stented intracranial aneurysms using adaptive embedded unstructured grids. Int. J. Numer. Meth. Fluids 57(5):475–493, 2008.MATHGoogle Scholar
  9. 9.
    Augsburger, L., P. Reymond, D. A. Rufenacht, and N. Stergiopulos. Intracranial stents being modeled as a porous medium: flow simulation in stented cerebral aneurysms. Ann. Biomed. Eng. 39(2):850–863, 2011.Google Scholar
  10. 10.
    Augst, A. D., B. Ariff, S. A. G. McG Thom, X. Y. Xu, and A. D. Hughes. Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am. J. Physiol. Heart Circ. Physiol. 293(2):H1031–H1037, 2007.Google Scholar
  11. 11.
    Auricchio, F., M. Conti, M. De Beule, G. De Santis, and B. Verhegghe. Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med. Eng. Phys. 33(3):281–289, 2011.Google Scholar
  12. 12.
    Auricchio, F., M. Conti, M. Ferraro, and A. Reali. Evaluation of carotid stent scaffolding through patient-specific finite element analysis. Int. J. Numer. Methods Biomed. Eng. 28(10):1043–1055, 2012.MathSciNetGoogle Scholar
  13. 13.
    Babiker, M. H., L. F. Gonzalez, J. Ryan, F. Albuquerque, D. Collins, A. Elvikis, et al. Influence of stent configuration on cerebral aneurysm fluid dynamics. J. Biomech. 45(3):440–447, 2012.Google Scholar
  14. 14.
    Bank, A. J., A. Versluis, S. M. Dodge, and W. H. Douglas. Atherosclerotic plaque rupture: a fatigue process? Med. Hypotheses 55(6):480–484, 2000.Google Scholar
  15. 15.
    Bash, S., J. P. Villablanca, R. Jahan, G. Duckwiler, M. Tillis, C. Kidwell, et al. Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am. J. Neuroradiol. 26(5):1012–1021, 2005.Google Scholar
  16. 16.
    Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N. Engl. J. Med. 325(7):445–453, 1991.Google Scholar
  17. 17.
    Bernardini, A., I. Larrabide, L. Petrini, G. Pennati, E. Flore, M. Kim, et al. Deployment of self-expandable stents in aneurysmatic cerebral vessels: comparison of different computational approaches for interventional planning. Comput. Meth. Biomech. Biomed. Eng. 15(3):303–311, 2012.Google Scholar
  18. 18.
    Biasi, G. M., A. Froio, E. B. Diethrich, G. Deleo, S. Galimberti, P. Mingazzini, et al. Carotid plaque echolucency increases the risk of stroke in carotid stenting: the Imaging in Carotid Angioplasty and Risk of Stroke (ICAROS) study. Circulation 110(6):756–762, 2004.Google Scholar
  19. 19.
    Bosiers, M., G. de Donato, K. Deloose, J. Verbist, P. Peeters, F. Castriota, et al. Does free cell area influence the outcome in carotid artery stenting? Eur. J. Vasc. Endovasc. Surg. 33(2):135–141, 2007.Google Scholar
  20. 20.
    Botti, L., M. Piccinelli, B. Ene-Iordache, A. Remuzzi, and L. Antiga. An adaptive mesh refinement solver for large-scale simulation of biological flows. Int. J. Numer. Methods Biomed. Eng. 26(1):86–100, 2010.MATHGoogle Scholar
  21. 21.
    Boussel, L., V. Rayz, C. McCulloch, A. Martin, G. Acevedo-Bolton, M. Lawton, et al. Aneurysm growth occurs at region of low wall shear stress patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke 39(11):2997–3002, 2008.Google Scholar
  22. 22.
    Brott, T. G., R. W. Hobson, G. Howard, G. S. Roubin, W. M. Clark, W. Brooks, et al. Stenting versus endarterectomy for treatment of carotid-artery stenosis. N. Engl. J. Med. 363(1):11–23, 2010.Google Scholar
  23. 23.
    Bühler, K., P. Felkel, and A. La Cruz. Geometric methods for vessel visualization and quantification—a survey, 2002. Accessed October 25, 2012.
  24. 24.
    Byun, H. S., and K. Rhee. CFD modeling of blood flow following coil embolization of aneurysms. Med. Eng. Phys. 26(9):755–761, 2004.Google Scholar
  25. 25.
    Harloff, A. Carotid plaque hemodynamics. Intervent. Neurol. 1(1):44–54, 2012.Google Scholar
  26. 26.
    Cebral, J. R., M. A. Castro, S. Appanaboyina, C. M. Putman, D. Millan, and A. F. Frangi. Efficient pipeline for image-based patient-specific analysis of cerebral aneurysm hemodynamics: technique and sensitivity. IEEE Trans. Med. Imaging 24(4):457–467, 2005.Google Scholar
  27. 27.
    Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. AJNR Am. J. Neuroradiol. 26(10):2550–2559, 2005.Google Scholar
  28. 28.
    Cebral, J. R., M. A. Castro, R. Löhner, J. E. Burgess, R. Pergolizzi, and C. M. Putman. Recent developments in patient-specific image-based modeling of hemodynamics. Mecanica Computacional 23:1471–1482, 2004.Google Scholar
  29. 29.
    Cebral, J. R., and R. Lohner. Efficient simulation of blood flow past complex endovascular devices using an adaptive embedding technique. IEEE Trans. Med. Imaging 24(4):468–476, 2005.Google Scholar
  30. 30.
    Cebral, J., R. Löhner, O. Soto, P. Choyke, and P. Yim. Patient-specific simulation of carotid artery stenting using computational fluid dynamics. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2001. New York: Springer, 2001, pp. 153–160.Google Scholar
  31. 31.
    Cebral, J. R., F. Mut, M. Raschi, E. Scrivano, R. Ceratto, P. Lylyk, et al. Aneurysm rupture following treatment with flow-diverting stents: computational hemodynamics analysis of treatment. AJNR Am. J. Neuroradiol. 32(1):27–33, 2011.Google Scholar
  32. 32.
    Cebral, J. R., F. Mut, J. Weir, and C. M. Putman. Association of hemodynamic characteristics and cerebral aneurysm rupture. AJNR Am. J. Neuroradiol. 32(2):264–270, 2011.Google Scholar
  33. 33.
    Chandran, K. B., J. H. Mun, K. K. Choi, J. S. Chen, A. Hamilton, A. Nagaraj, et al. A method for in vivo analysis for regional arterial wall material property alterations with atherosclerosis: preliminary results. Med. Eng. Phys. 25(4):289–298, 2003.Google Scholar
  34. 34.
    Chastain, H. D., M. S. Campbell, S. Iyer, G. S. Roubin, J. Vitek, A. Mathur, et al. Extracranial vertebral artery stent placement: in-hospital and follow-up results. J. Neurosurg. 91(4):547–552, 1999.Google Scholar
  35. 35.
    Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87(4):1179–1187, 1993.Google Scholar
  36. 36.
    Clark, D. J., S. Lessio, M. O’Donoghue, R. Schainfeld, and K. Rosenfield. Safety and utility of intravascular ultrasound-guided carotid artery stenting. Catheter. Cardiovasc. Interv. 63(3):355–362, 2004.Google Scholar
  37. 37.
    Conti, M., M. De Beule, P. Mortier, D. Van Loo, P. Verdonck, F. Vermassen, et al. Nitinol embolic protection filters: design investigation by finite element analysis. J. Mater. Eng. Perform. 18(5):787–792, 2009.Google Scholar
  38. 38.
    Conti, M., D. Van Loo, F. Auricchio, M. De Beule, G. De Santis, B. Verhegghe, et al. Impact of carotid stent cell design on vessel scaffolding: a case study comparing experimental investigation and numerical simulations. J. Endovasc. Ther. 18(3):397–406, 2011.Google Scholar
  39. 39.
    Cosottini, M., M. C. Michelassi, W. Bencivelli, G. Lazzarotti, S. Picchietti, G. Orlandi, et al. In stent restenosis predictors after carotid artery stenting. Stroke Res. Treat., 2010. doi:10.4061/2010/864724.
  40. 40.
    Creane, A., E. Maher, S. Sultan, N. Hynes, D. J. Kelly, and C. Lally. Finite element modelling of diseased carotid bifurcations generated from in vivo computerised tomographic angiography. Comput. Biol. Med. 40(4):419–429, 2010.Google Scholar
  41. 41.
    De Beule, M., P. Mortier, S. G. Carlier, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41(2):383–389, 2008.Google Scholar
  42. 42.
    De Santis, G., M. Conti, B. Trachet, T. De Schryver, M. De Beule, J. Degroote, et al. Haemodynamic impact of stent–vessel (mal)apposition following carotid artery stenting: mind the gaps! Comput. Meth. Biomech. Biomed. Eng., 2011. doi:10.1080/10255842.2011.629997.
  43. 43.
    De Santis, G., M. De Beule, K. Van Canneyt, P. Segers, P. Verdonck, and B. Verhegghe. Full-hexahedral structured meshing for image-based computational vascular modeling. Med. Eng. Phys. 33(10):1318–1325, 2011.Google Scholar
  44. 44.
    Dequidt, J., M. Marchal, C. Duriez, E. Kerien, and S. Cotin. Interactive simulation of embolization coils: modeling and experimental validation. Med. Image Comput. Comput. Assist. Intervent. 11(Pt 1):695–702, 2008.Google Scholar
  45. 45.
    Esposito, L., T. Saam, P. Heider, A. Bockelbrink, J. Pelisek, D. Sepp, et al. MRI plaque imaging reveals high-risk carotid plaques especially in diabetic patients irrespective of the degree of stenosis. BMC Med. Imaging 10:27, 2010.Google Scholar
  46. 46.
    Famaey, N., G. Sommer, J. Vander Sloten, and G. A. Holzapfel. Arterial clamping: finite element simulation and in vivo validation. J. Mech. Behav. Biomed. Mater. 12:107–118, 2012.Google Scholar
  47. 47.
    Felkel, P., R. Wegenkittl, and A. Kanitsar. Vessel tracking in peripheral CTA datasets—an overview. In: Proceedings of the Spring Conference on Computer Graphics, 2001. IEEE, 2001, pp. 232–239.Google Scholar
  48. 48.
    Fisher, M., A. Paganini-Hill, A. Martin, M. Cosgrove, J. F. Toole, H. J. M. Barnett, et al. Carotid plaque pathology thrombosis, ulceration, and stroke pathogenesis. Stroke 36(2):253–257, 2005.Google Scholar
  49. 49.
    Fu, W., Z. Gu, X. Meng, B. Chu, and A. Qiao. Numerical simulation of hemodynamics in stented internal carotid aneurysm based on patient-specific model. J. Biomech. 43(7):1337–1342, 2010.Google Scholar
  50. 50.
    Fukumoto, Y., T. Hiro, T. Fujii, G. Hashimoto, T. Fujimura, J. Yamada, et al. Localized elevation of shear stress is related to coronary plaque rupture a 3-dimensional intravascular ultrasound study with in-vivo color mapping of shear stress distribution. J. Am. Coll. Cardiol. 51(6):645–650, 2008.Google Scholar
  51. 51.
    Gao, H., Q. Long, M. Graves, J. H. Gillard, and Z.-Y. Li. Study of reproducibility of human arterial plaque reconstruction and its effects on stress analysis based on multispectral in vivo magnetic resonance imaging. J. Magn. Reson. Imaging 30(1):85–93, 2009.Google Scholar
  52. 52.
    Gastaldi, D., S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9(5):551–561, 2010.Google Scholar
  53. 53.
    Gill, J. D., H. M. Ladak, D. A. Steinman, and A. Fenster. Accuracy and variability assessment of a semiautomatic technique for segmentation of the carotid arteries from three-dimensional ultrasound images. Med. Phys. 27(6):1333–1342, 2000.Google Scholar
  54. 54.
    Glagov, S., E. Weisenberg, C. K. Zarins, R. Stankunavicius, and G. J. Kolettis. Compensatory enlargement of human atherosclerotic coronary arteries. N. Engl. J. Med. 316(22):1371–1375, 1987.Google Scholar
  55. 55.
    Glagov, S., C. Zarins, D. P. Giddens, and D. N. Ku. Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. Arch. Pathol. Lab. Med. 112(10):1018–1031, 1988.Google Scholar
  56. 56.
    Glor, F. P., Q. Long, A. D. Hughes, A. D. Augst, B. Ariff, S. A. M. Thom, et al. Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann. Biomed. Eng. 31(2):142–151, 2003.Google Scholar
  57. 57.
    Goldstein, L. B., R. Adams, M. J. Alberts, L. J. Appel, L. M. Brass, C. D. Bushnell, et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council: cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: The American Academy of Neurology affirms the value of this guideline. Stroke 37(6):1583–1633, 2006.Google Scholar
  58. 58.
    Grabe, M. Grid Generation Methods. New York: Springer, 2010.Google Scholar
  59. 59.
    Groden, C., J. Laudan, S. Gatchell, and H. Zeumer. Three-dimensional pulsatile flow simulation before and after endovascular coil embolization of a terminal cerebral aneurysm. J. Cereb. Blood Flow Metab. 21(12):1464–1471, 2001.Google Scholar
  60. 60.
    Groen, H. C., F. J. H. Gijsen, A. van der Lugt, M. S. Ferguson, T. S. Hatsukami, A. F. W. van der Steen, et al. Plaque rupture in the carotid artery is localized at the high shear stress region: a case report. Stroke 38(8):2379–2381, 2007.Google Scholar
  61. 61.
    Grønholdt, M.-L. M., B. G. Nordestgaard, T. V. Schroeder, S. Vorstrup, and H. Sillesen. Ultrasonic echolucent carotid plaques predict future strokes. Circulation 104(1):68–73, 2001.Google Scholar
  62. 62.
    Gurm, H. S., J. S. Yadav, P. Fayad, B. T. Katzen, G. J. Mishkel, T. K. Bajwa, et al. Long-term results of carotid stenting versus endarterectomy in high-risk patients. N. Engl. J. Med. 358(15):1572–1579, 2008.Google Scholar
  63. 63.
    Haraguchi, K., K. Houkin, I. Koyanagi, T. Nonaka, and T. Baba. Evaluation of carotid plaque composition by computed tomography angiography and black blood magnetic resonance image. Intervent. Neuroradiol. 14(1):39–43, 2008.Google Scholar
  64. 64.
    Hayase, H., K. Tokunaga, T. Nakayama, K. Sugiu, A. Nishida, S. Arimitsu, et al. Computational fluid dynamics of carotid arteries after carotid endarterectomy or carotid artery stenting based on postoperative patient-specific CT angiography and ultrasound flow data. Neurosurgery 68:1096–1101, 2011.Google Scholar
  65. 65.
    Heller, R. S., and A. M. Malek. Delivery technique plays an important role in determining vessel wall apposition of the Enterprise self-expanding intracranial stent. J. NeuroIntervent. Surg. 3(4):340–343, 2011.Google Scholar
  66. 66.
    Hoi, Y., H. Meng, S. H. Woodward, B. R. Bendok, R. A. Hanel, L. R. Guterman, et al. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid dynamics study. J. Neurosurg. 101(4):676–681, 2004.Google Scholar
  67. 67.
    Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127(1):166–180, 2005.Google Scholar
  68. 68.
    Holzapfel, G. A., M. Stadler, and T. C. Gasser. Towards a Computational Methodology for Optimizing Angioplasty Treatments with Stenting. Mechanics of Biological Tissue. Heidelberg: Springer, pp. 207–220, 2005.Google Scholar
  69. 69.
    Holzapfel, G. A., M. Stadler, and C. A. J. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30(6):753–767, 2002.Google Scholar
  70. 70.
    Huang, H., R. Virmani, H. Younis, A. P. Burke, R. D. Kamm, and R. T. Lee. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056, 2001.Google Scholar
  71. 71.
    Huang, X.-Z., Z.-Y. Wang, X.-H. Dai, Yun-Zhang, and M. Zhang. Velocity vector imaging of longitudinal mechanical properties of upstream and downstream shoulders and fibrous cap tops of human carotid atherosclerotic plaque. Echocardiography 30(2):211–218, 2013.Google Scholar
  72. 72.
    Huang, Q.-H., Y.-F. Wu, Y. Xu, B. Hong, L. Zhang, and J.-M. Liu. Vascular geometry change because of endovascular stent placement for anterior communicating artery aneurysms. AJNR Am. J. Neuroradiol. 32(9):1721–1725, 2011.Google Scholar
  73. 73.
    Isaksen, J. G., Y. Bazilevs, T. Kvamsdal, Y. Zhang, J. H. Kaspersen, K. Waterloo, et al. Determination of wall tension in cerebral artery aneurysms by numerical simulation. Stroke 39(12):3172–3178, 2008.Google Scholar
  74. 74.
    Janiga, G., C. Rössl, M. Skalej, and D. Thévenin. Realistic virtual intracranial stenting and computational fluid dynamics for treatment analysis. J. Biomech. 46:7–12, 2012.Google Scholar
  75. 75.
    Jeong, W., and K. Rhee. Hemodynamics of cerebral aneurysms: computational analyses of aneurysm progress and treatment. Comput. Math. Methods Med., 2012. doi:10.1155/2012/782801.
  76. 76.
    Jou, L. D., D. H. Lee, H. Morsi, and M. E. Mawad. Wall shear stress on ruptured and unruptured intracranial aneurysms at the internal carotid artery. Am. J. Neuroradiol. 29(9):1761–1767, 2008.Google Scholar
  77. 77.
    Kaazempur-Mofrad, M. R., A. G. Isasi, H. F. Younis, R. C. Chan, D. P. Hinton, G. Sukhova, et al. Characterization of the atherosclerotic carotid bifurcation using MRI, finite element modeling, and histology. Ann. Biomed. Eng. 32(7):932–946, 2004.Google Scholar
  78. 78.
    Kakalis, N. M. P., A. P. Mitsos, J. V. Byrne, and Y. Ventikos. The haemodynamics of endovascular aneurysm treatment: a computational modelling approach for estimating the influence of multiple coil deployment. IEEE Trans. Med. Imaging 27(6):814–824, 2008.Google Scholar
  79. 79.
    Kiousis, D. E., S. F. Rubinigg, M. Auer, and G. A. Holzapfel. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example. J. Biomech. Eng. 131(12):121002, 2009.Google Scholar
  80. 80.
    Kirbas, C., and F. Quek. A review of vessel extraction techniques and algorithms. ACM Comput. Surv. 36(2):81–121, 2004.Google Scholar
  81. 81.
    Klein, I. F., P. C. Lavallée, P. J. Touboul, E. Schouman-Claeys, and P. Amarenco. In vivo middle cerebral artery plaque imaging by high-resolution MRI. Neurology 67(2):327–329, 2006.Google Scholar
  82. 82.
    Koroshetz, W. J., and R. G. González. Causes of ischemic stroke. In: Acute Ischemic Stroke, edited by R. G. González, J. A. Hirsch, W. J. Koroshetz, M. H. Lev, and P. W. Schaefer. Berlin: Springer Berlin Heidelberg, 2006, pp. 27–40.Google Scholar
  83. 83.
    Ku, D. N., D. P. Giddens, C. K. Zarins, and S. Glagov. Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arterioscler. Thromb. Vasc. Biol. 5(3):293–302, 1985.Google Scholar
  84. 84.
    Kulcsár, Z., A. Ugron, M. Marosfoi, Z. Berentei, G. Paál, and I. Szikora. Hemodynamics of cerebral aneurysm initiation: the role of wall shear stress and spatial wall shear stress gradient. AJNR Am. J. Neuroradiol. 32(3):587–594, 2011.Google Scholar
  85. 85.
    Larrabide, I., M. Kim, L. Augsburger, M. C. Villa-Uriol, D. Rüfenacht, and A. F. Frangi. Fast virtual deployment of self-expandable stents: method and in vitro evaluation for intracranial aneurysmal stenting. Med. Image Anal. 16(3):721–730, 2012.Google Scholar
  86. 86.
    Leach, J. R., V. L. Rayz, B. Soares, M. Wintermark, M. R. K. Mofrad, and D. Saloner. Carotid atheroma rupture observed in vivo and FSI-predicted stress distribution based on pre-rupture imaging. Ann. Biomed. Eng. 38(8):2748–2765, 2010.Google Scholar
  87. 87.
    Lee, S.-W., L. Antiga, J. D. Spence, and D. A. Steinman. Geometry of the carotid bifurcation predicts its exposure to disturbed flow. Stroke 39(8):2341–2347, 2008.Google Scholar
  88. 88.
    Lee, S.-W., L. Antiga, and D. A. Steinman. Correlations among indicators of disturbed flow at the normal carotid bifurcation. J. Biomech. Eng. 131(6):061013, 2009.Google Scholar
  89. 89.
    Lee, R. T., H. M. Loree, G. C. Cheng, E. H. Lieberman, N. Jaramillo, and F. J. Schoen. Computational structural analysis based on intravascular ultrasound imaging before in vitro angioplasty: prediction of plaque fracture locations. J. Am. Coll. Cardiol. 21(3):777–782, 1993.Google Scholar
  90. 90.
    Lesage, D., E. D. Angelini, I. Bloch, and G. Funka-Lea. A review of 3D vessel lumen segmentation techniques: models, features and extraction schemes. Med. Image Anal. 13(6):819–845, 2009.Google Scholar
  91. 91.
    Li, Z.-Y., S. P. S. Howarth, T. Tang, and J. H. Gillard. How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke 37(5):1195–1199, 2006.Google Scholar
  92. 92.
    Li, Z.-Y., S. P. S. Howarth, T. Tang, M. J. Graves, J. U-King-Im, R. A. Trivedi, et al. Structural analysis and magnetic resonance imaging predict plaque vulnerability: a study comparing symptomatic and asymptomatic individuals. J. Vasc. Surg. 45(4):768–775, 2007.Google Scholar
  93. 93.
    Li, Z.-Y., S. Howarth, R. A. Trivedi, J. M. U-King-Im, M. J. Graves, A. Brown, et al. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39(14):2611–2622, 2006.Google Scholar
  94. 94.
    Li, Z.-Y., T. Tang, J. U-King-Im, M. Graves, M. Sutcliffe, and J. H. Gillard. Assessment of carotid plaque vulnerability using structural and geometrical determinants. Circ. J. 72(7):1092–1099, 2008.Google Scholar
  95. 95.
    Li, C., S. Wang, J. Chen, H. Yu, Y. Zhang, F. Jiang, et al. Influence of hemodynamics on recanalization of totally occluded intracranial aneurysms: a patient-specific computational fluid dynamic simulation study. J. Neurosurg. 117(2):276–283, 2012.Google Scholar
  96. 96.
    Li, M., W. Xu, L. Song, F. Feng, H. You, J. Ni, et al. Atherosclerosis of middle cerebral artery: evaluation with high-resolution MR imaging at 3 T. Atherosclerosis 204(2):447–452, 2009.Google Scholar
  97. 97.
    Löhner, R., J. R. Cebral, F. E. Camelli, S. Appanaboyina, J. D. Baum, E. L. Mestreau, et al. Adaptive embedded and immersed unstructured grid techniques. Comput. Methods Appl. Mech. Eng. 197(25–28):2173–2197, 2008.MATHGoogle Scholar
  98. 98.
    Long, Q., X. Y. Xu, B. Ariff, S. A. Thom, A. D. Hughes, and A. V. Stanton. Reconstruction of blood flow patterns in a human carotid bifurcation: a combined CFD and MRI study. J. Magn. Reson. Imaging 11(3):299–311, 2000.Google Scholar
  99. 99.
    Long, Q., X. Y. Xu, M. W. Collins, M. Bourne, and T. M. Griffith. Magnetic resonance image processing and structured grid generation of a human abdominal bifurcation. Comput. Methods Programs Biomed. 56(3):249–259, 1998.Google Scholar
  100. 100.
    Long, Q., X. Xu, K. Ramnarine, and P. Hoskins. Numerical investigation of physiologically realistic pulsatile flow through arterial stenosis. J. Biomech. 34(10):1229–1242, 2001.Google Scholar
  101. 101.
    Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27(2):195–204, 1994.Google Scholar
  102. 102.
    Loree, H. M., R. D. Kamm, R. G. Stringfellow, and R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71(4):850–858, 1992.Google Scholar
  103. 103.
    Lovett, J. K., S. C. Howard, and P. M. Rothwell. Pulse pressure is independently associated with carotid plaque ulceration. J. Hypertens. 21(9):1669–1676, 2003.Google Scholar
  104. 104.
    Lovett, J. K., and P. M. Rothwell. Site of carotid plaque ulceration in relation to direction of blood flow: an angiographic and pathological study. Cerebrovasc. Dis. 16(4):369–375, 2003.Google Scholar
  105. 105.
    Lu, G., L. Huang, X. L. Zhang, S. Z. Wang, Y. Hong, Z. Hu, et al. Influence of hemodynamic factors on rupture of intracranial aneurysms: patient-specific 3D mirror aneurysms model computational fluid dynamics simulation. AJNR Am. J. Neuroradiol. 32(7):1255–1261, 2011.Google Scholar
  106. 106.
    Ma, D., G. F. Dargush, S. K. Natarajan, E. I. Levy, A. H. Siddiqui, and H. Meng. Computer modeling of deployment and mechanical expansion of neurovascular flow diverter in patient-specific intracranial aneurysms. J. Biomech. 45(13):2256–2263, 2012.Google Scholar
  107. 107.
    Mani, V., S. H. Aguiar, V. V. Itskovich, K. B. Weinshelbaum, J. E. Postley, E. J. Wasenda, et al. Carotid black blood MRI burden of atherosclerotic disease assessment correlates with ultrasound intima-media thickness. J. Cardiovasc. Magn. Reson. 8(3):529–534, 2006.Google Scholar
  108. 108.
    Mantha, A., C. Karmonik, G. Benndorf, C. Strother, and R. Metcalfe. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. AJNR Am. J. Neuroradiol. 27(5):1113–1118, 2006.Google Scholar
  109. 109.
    Marks, M. P., M. L. Marcellus, H. M. Do, P. K. Schraedley-Desmond, G. K. Steinberg, D. C. Tong, et al. Intracranial angioplasty without stenting for symptomatic atherosclerotic stenosis: long-term follow-up. AJNR Am. J. Neuroradiol. 26(3):525–530, 2005.Google Scholar
  110. 110.
    Mathers, C. D., T. Boerma, and D. M. Fat. Global and regional causes of death. Br. Med. Bull. 92(1):7–32, 2009.Google Scholar
  111. 111.
    Maurits, N. M., G. E. Loots, and A. E. P. Veldman. The influence of vessel wall elasticity and peripheral resistance on the carotid artery flow wave form: a CFD model compared to in vivo ultrasound measurements. J. Biomech. 40(2):427–436, 2007.Google Scholar
  112. 112.
    Meng, H., Z. Wang, Y. Hoi, L. Gao, E. Metaxa, D. D. Swartz, et al. Complex hemodynamics at the apex of an arterial bifurcation induces vascular remodeling resembling cerebral aneurysm initiation. Stroke 38(6):1924–1931, 2007.Google Scholar
  113. 113.
    Migliavacca, F., L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 27(1):13–18, 2005.Google Scholar
  114. 114.
    Milner, J. S., J. A. Moore, B. K. Rutt, and D. A. Steinman. Hemodynamics of human carotid artery bifurcations: computational studies with models reconstructed from magnetic resonance imaging of normal subjects. J. Vasc. Surg. 28(1):143–156, 1998.Google Scholar
  115. 115.
    Morales, H. G., M. Kim, E. E. Vivas, M.-C. Villa-Uriol, I. Larrabide, T. Sola, et al. How do coil configuration and packing density influence intra-aneurysmal hemodynamics? AJNR Am. J. Neuroradiol. 32(10):1935–1941, 2011.Google Scholar
  116. 116.
    Morlacchi, S., B. Keller, P. Arcangeli, M. Balzan, F. Migliavacca, G. Dubini, et al. Hemodynamics and in-stent restenosis: micro-CT images, histology, and computer simulations. Ann. Biomed. Eng. 39(10):2615–2626, 2011.Google Scholar
  117. 117.
    Mortier, P., M. De Beule, S. G. Carlier, R. Van Impe, B. Verhegghe, and P. Verdonck. Numerical study of the uniformity of balloon-expandable stent deployment. J. Biomech. Eng. 130(2):021018, 2008.Google Scholar
  118. 118.
    Mortier, P., M. De Beule, P. Segers, P. Verdonck, and B. Verhegghe. Virtual bench testing of new generation coronary stents. EuroIntervention 7(3):369–376, 2011.Google Scholar
  119. 119.
    Mortier, P., M. De Beule, D. Van Loo, B. Masschaele, P. Verdonck, and B. Verhegghe. Automated generation of a finite element stent model. Med. Biol. Eng. Comput. 46(11):1169–1173, 2008.Google Scholar
  120. 120.
    Mortier, P., M. De Beule, D. Van Loo, B. Verhegghe, and P. Verdonck. Finite element analysis of side branch access during bifurcation stenting. Med. Eng. Phys. 31(4):434–440, 2009.Google Scholar
  121. 121.
    Mortier, P., H. M. van Beusekom, M. D. Beule, I. Krabbendam-Peters, B. V. D. Smissen, G. D. Santis, et al. Improved understanding of stent malapposition using virtual bench testing. Intervent. Cardiol. 6(2):106–109, 2011.Google Scholar
  122. 122.
    MRC European Carotid Surgery Trial. Interim results for symptomatic patients with severe (70–99%) or with mild (0–29%) carotid stenosis. European Carotid Surgery Trialists’ Collaborative Group. Lancet 337(8752):1235–1243, 1991.Google Scholar
  123. 123.
    Müller-Hülsbeck, S., P. J. Schäfer, N. Charalambous, S. R. Schaffner, M. Heller, and T. Jahnke. Comparison of carotid stents: an in vitro experiment focusing on stent design. J. Endovasc. Ther. 16(2):168–177, 2009.Google Scholar
  124. 124.
    Murphy, J., and F. Boyle. Predicting neointimal hyperplasia in stented arteries using time-dependant computational fluid dynamics: a review. Comput. Biol. Med. 40(4):408–418, 2010.Google Scholar
  125. 125.
    Nabel, E. G. Incidence and Prevalence: 2006 Chart Book on Cardiovascular and Lung Diseases. Bethesda, MD: National Heart, Lung, and Blood Institute, 2006. Accessed October 22, 2012.
  126. 126.
    Naghavi, M., P. Libby, E. Falk, S. W. Casscells, S. Litovsky, J. Rumberger, et al. From vulnerable plaque to vulnerable patient. A call for new definitions and risk assessment strategies: part I. Circulation 108(14):1664–1672, 2003.Google Scholar
  127. 127.
    Nogueira, R. G., H. L. Lutsep, R. Gupta, T. G. Jovin, G. W. Albers, G. A. Walker, et al. Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): a randomised trial. Lancet 380(9849):1231–1240, 2012.Google Scholar
  128. 128.
    Omodaka, S., S.-I. Sugiyama, T. Inoue, K. Funamoto, M. Fujimura, H. Shimizu, et al. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Cerebrovasc. Dis. 34(2):121–129, 2012.Google Scholar
  129. 129.
    Owen, S. J. A survey of unstructured mesh generation technology. 1998, Accessed 14 Feb 2013.
  130. 130.
    Pasterkamp, G., and P. C. Smits. Imaging of atherosclerosis. Remodelling of coronary arteries. J. Cardiovasc. Risk 9(5):229–235, 2002.Google Scholar
  131. 131.
    Prakash, S., and C. R. Ethier. Requirements for mesh resolution in 3D computational hemodynamics. J. Biomech. Eng. 123(2):134–144, 2001.Google Scholar
  132. 132.
    Reimers, B., D. Nikas, E. Stabile, L. Favero, S. Saccà, A. Cremonesi, et al. Preliminary experience with optical coherence tomography imaging to evaluate carotid artery stents: safety, feasibility and techniques. EuroIntervention 7(1):98–105, 2011.Google Scholar
  133. 133.
    Reiter, M., I. Effenberger, S. Sabeti, W. Mlekusch, O. Schlager, P. Dick, et al. Increasing carotid plaque echolucency is predictive of cardiovascular events in high-risk patients. Radiology 248(3):1050–1055, 2008.Google Scholar
  134. 134.
    Resnick, N., H. Yahav, A. Shay-Salit, M. Shushy, S. Schubert, L. C. M. Zilberman, et al. Fluid shear stress and the vascular endothelium: for better and for worse. Prog. Biophys. Mol. Biol. 81(3):177–199, 2003.Google Scholar
  135. 135.
    Richardson, P. D. Biomechanics of plaque rupture: progress, problems, and new frontiers. Ann. Biomed. Eng. 30(4):524–536, 2002.Google Scholar
  136. 136.
    Richardson, P. D., M. J. Davies, and G. V. Born. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944, 1989.Google Scholar
  137. 137.
    Rochemont, R. du M. de, B. Turowski, M. Buchkremer, M. Sitzer, F. E. Zanella, and J. Berkefeld. Recurrent symptomatic high-grade intracranial stenoses: safety and efficacy of undersized stents—initial experience. Radiology 231(1):45–49, 2004.Google Scholar
  138. 138.
    Roger, V. L., A. S. Go, D. M. Lloyd-Jones, E. J. Benjamin, J. D. Berry, W. B. Borden, et al. Heart disease and stroke statistics—2012 update: a report from the American Heart Association. Circulation 125(1):e2–e220, 2012.Google Scholar
  139. 139.
    Rothwell, P. M., and L. B. Goldstein. Carotid endarterectomy for asymptomatic carotid stenosis asymptomatic carotid surgery trial. Stroke 35(10):2425–2427, 2004.Google Scholar
  140. 140.
    Ryou, H. S., S. Kim, S. W. Kim, and S. W. Cho. Construction of healthy arteries using computed tomography and virtual histology intravascular ultrasound. J. Biomech. 45(9):1612–1618, 2012.Google Scholar
  141. 141.
    Saam, T., H. R. Underhill, B. Chu, N. Takaya, J. Cai, N. L. Polissar, et al. Prevalence of American Heart Association type VI carotid atherosclerotic lesions identified by magnetic resonance imaging for different levels of stenosis as measured by duplex ultrasound. J. Am. Coll. Cardiol. 51(10):1014–1021, 2008.Google Scholar
  142. 142.
    Saba, L., R. Sanfilippo, R. Montisci, and G. Mallarini. Carotid artery wall thickness: comparison between sonography and multi-detector row CT angiography. Neuroradiology 52(2):75–82, 2009.Google Scholar
  143. 143.
    Saba, L., R. Sanfilippo, R. Montisci, and G. Mallarini. Associations between carotid artery wall thickness and cardiovascular risk factors using multidetector CT. AJNR Am. J. Neuroradiol. 31(9):1758–1763, 2010.Google Scholar
  144. 144.
    Saba, L., R. Sanfilippo, L. Pascalis, R. Montisci, G. Caddeo, and G. Mallarini. Carotid artery wall thickness and ischemic symptoms: evaluation using multi-detector-row CT angiography. Eur. Radiol. 18(9):1962–1971, 2008.Google Scholar
  145. 145.
    Sacco, R. L., R. Adams, G. Albers, M. J. Alberts, O. Benavente, K. Furie, et al. Guidelines for prevention of stroke in patients with ischemic stroke or transient ischemic attack: a statement for healthcare professionals from the American Heart Association/American Stroke Association Council on Stroke: co-sponsored by the Council on Cardiovascular Radiology and Intervention: The American Academy of Neurology affirms the value of this guideline. Stroke 37(2):577–617, 2006.Google Scholar
  146. 146.
    Sadat, U., Z. Teng, V. E. Young, S. R. Walsh, Z. Y. Li, M. J. Graves, et al. Association between biomechanical structural stresses of atherosclerotic carotid plaques and subsequent ischaemic cerebrovascular events—a longitudinal in vivo magnetic resonance imaging-based finite element study. Eur. J. Vasc. Endovasc. Surg. 40(4):485–491, 2010.Google Scholar
  147. 147.
    Sahni, O., K. E. Jansen, C. A. Taylor, and M. S. Shephard. Automated adaptive cardiovascular flow simulations. Engineering with Computers 25(1):25–36, 2009.Google Scholar
  148. 148.
    Santis, G. D., P. Mortier, M. D. Beule, P. Segers, P. Verdonck, and B. Verhegghe. Patient-specific computational fluid dynamics: structured mesh generation from coronary angiography. Med. Biol. Eng. Comput. 48(4):371–380, 2010.Google Scholar
  149. 149.
    Saver, J. L., R. Jahan, E. I. Levy, T. G. Jovin, B. Baxter, R. G. Nogueira, et al. Solitaire flow restoration device versus the Merci Retriever in patients with acute ischaemic stroke (SWIFT): a randomised, parallel-group, non-inferiority trial. Lancet 380(9849):1241–1249, 2012.Google Scholar
  150. 150.
    Schirmer, C. M., and A. M. Malek. Wall shear stress gradient analysis within an idealized stenosis using non-Newtonian flow. Neurosurgery 61(4):853–863, 2007; discussion 863–864.Google Scholar
  151. 151.
    Setacci, C., G. de Donato, F. Setacci, G. Galzerano, P. Sirignano, A. Cappelli, et al. Safety and feasibility of intravascular optical coherence tomography using a nonocclusive technique to evaluate carotid plaques before and after stent deployment. J. Endovasc. Ther. 19(3):303–311, 2012.Google Scholar
  152. 152.
    Shojima, M., M. Oshima, K. Takagi, R. Torii, M. Hayakawa, K. Katada, et al. Magnitude and role of wall shear stress on cerebral aneurysm computational fluid dynamic study of 20 middle cerebral artery aneurysms. Stroke 35(11):2500–2505, 2004.Google Scholar
  153. 153.
    Siqueira, D. A., A. A. Abizaid, J. de. R. Costa, F. Feres, L. A. Mattos, R. Staico, et al. Late incomplete apposition after drug-eluting stent implantation: incidence and potential for adverse clinical outcomes. Eur. Heart J. 28(11):1304–1309, 2007.Google Scholar
  154. 154.
    Soloperto, G., N. G. Keenan, M. N. Sheppard, J. Ohayon, N. B. Wood, D. J. Pennell, et al. Combined imaging, computational and histological analysis of a ruptured carotid plaque: a patient-specific analysis. Artery Res. 4(2):59–65, 2010.Google Scholar
  155. 155.
    Sommer, G., P. Regitnig, L. Költringer, and G. A. Holzapfel. Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings. Am. J. Physiol. Heart Circ. Physiol. 298(3):H898–H912, 2010.Google Scholar
  156. 156.
    SPACE Collaborative Group, P. A. Ringleb, J. Allenberg, H. Brückmann, H. H. Eckstein, G. Fraedrich, et al. 30 day results from the SPACE trial of stent-protected angioplasty versus carotid endarterectomy in symptomatic patients: a randomised non-inferiority trial. Lancet 368(9543):1239–1247, 2006.Google Scholar
  157. 157.
    Stary, H. C., A. B. Chandler, R. E. Dinsmore, V. Fuster, S. Glagov, W. Insull, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler. Thromb. Vasc. Biol. 15(9):1512–1531, 1995.Google Scholar
  158. 158.
    Stehbens, W. E. The elusive local factor in atherosclerosis. Med. Hypotheses 48(6):503–509, 1997.Google Scholar
  159. 159.
    Steinman, D. A. Image-based computational fluid dynamics modeling in realistic arterial geometries. Ann. Biomed. Eng. 30(4):483–497, 2002.Google Scholar
  160. 160.
    Steinman, D. A., C. R. Ethier, and B. K. Rutt. Combined analysis of spatial and velocity displacement artifacts in phase contrast measurements of complex flows. J. Magn. Reson. Imaging 7(2):339–346, 1997.Google Scholar
  161. 161.
    Steinman, D. A., J. B. Thomas, H. M. Ladak, J. S. Milner, B. K. Rutt, and J. D. Spence. Reconstruction of carotid bifurcation hemodynamics and wall thickness using computational fluid dynamics and MRI. Magn. Reson. Med. 47(1):149–159, 2002.Google Scholar
  162. 162.
    Stroud, J. S., S. A. Berger, and D. Saloner. Numerical analysis of flow through a severely stenotic carotid artery bifurcation. J. Biomech. Eng. 124(1):9–20, 2002.Google Scholar
  163. 163.
    Stuhne, G. R., and D. A. Steinman. Finite-element modeling of the hemodynamics of stented aneurysms. J. Biomech. Eng. 126(3):382–387, 2004.Google Scholar
  164. 164.
    Suh, D. C., Y. B. Ko, S.-T. Park, K. Yoon, O. K. Lim, J. S. Oh, et al. Computational flow dynamics of the severe M1 stenosis before and after stenting. Neurointervention 6(1):13–16, 2011.Google Scholar
  165. 165.
    Suh, D. C., S.-T. Park, T. S. Oh, S.-O. Park, O. K. Lim, S. Park, et al. High shear stress at the surface of enhancing plaque in the systolic phase is related to the symptom presentation of severe M1 stenosis. Korean J. Radiol. 12(4):515–518, 2011.Google Scholar
  166. 166.
    Sun, K. Development of segmentation methods for vascular angiogram. IETE Tech. Rev. 28(5):392, 2011.Google Scholar
  167. 167.
    Suri, J. S., K. Liu, L. Reden, and S. Laxminarayan. A review on MR vascular image processing algorithms: acquisition and prefiltering: part I. IEEE Trans. Inf Technol. Biomed. 6(4):324, 2002.Google Scholar
  168. 168.
    Suri, J. S., K. Liu, L. Reden, and S. Laxminarayan. A review on MR vascular image processing: skeleton versus nonskeleton approaches: part II. IEEE Trans. Inf. Technol. Biomed. 6(4):338, 2002.Google Scholar
  169. 169.
    Takao, H., Y. Murayama, S. Otsuka, Y. Qian, A. Mohamed, S. Masuda, et al. Hemodynamic differences between unruptured and ruptured intracranial aneurysms during observation. Stroke 43(5):1436–1439, 2012.Google Scholar
  170. 170.
    Takeuchi, S., and T. Karino. Flow patterns and distributions of fluid velocity and wall shear stress in the human internal carotid and middle cerebral arteries. World Neurosurg. 73(3):174–185, 2010.Google Scholar
  171. 171.
    Tang, D., Z. Teng, G. Canton, T. S. Hatsukami, L. Dong, X. Huang, et al. Local critical stress correlates better than global maximum stress with plaque morphological features linked to atherosclerotic plaque vulnerability: an in vivo multi-patient study. Biomed. Eng. Online 8:15, 2009.Google Scholar
  172. 172.
    Tang, D., Z. Teng, G. Canton, C. Yang, M. Ferguson, X. Huang, et al. Sites of rupture in human atherosclerotic carotid plaques are associated with high structural stresses: an in vivo MRI-based 3D fluid–structure interaction study. Stroke 40(10):3258–3263, 2009.Google Scholar
  173. 173.
    Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Steady flow and wall compression in stenotic arteries: a three-dimensional thick-wall model with fluid–wall interactions. J. Biomech. Eng. 123(6):548–557, 2001.Google Scholar
  174. 174.
    Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid–structure interactions (FSI) models. J. Biomech. Eng. 126(3):363–370, 2004.Google Scholar
  175. 175.
    Tang, D., C. Yang, H. Walker, S. Kobayashi, and D. N. Ku. Simulating cyclic artery compression using a 3D unsteady model with fluid–structure interactions. Comput. Struct. 80(20):1651–1665, 2002.Google Scholar
  176. 176.
    Tang, D., C. Yang, J. Zheng, P. K. Woodard, J. E. Saffitz, G. A. Sicard, et al. Quantifying effects of plaque structure and material properties on stress distributions in human atherosclerotic plaques using 3D FSI models. J. Biomech. Eng. 127(7):1185–1194, 2005.Google Scholar
  177. 177.
    Tang, D., C. Yang, J. Zheng, P. K. Woodard, G. A. Sicard, J. E. Saffitz, et al. 3D MRI-based multicomponent FSI models for atherosclerotic plaques. Ann. Biomed. Eng. 32(7):947–960, 2004.Google Scholar
  178. 178.
    Taylor, C. A., and D. A. Steinman. Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann. Biomed. Eng. 38(3):1188–1203, 2010.Google Scholar
  179. 179.
    Tegos, T. J., M. M. Sabetai, A. N. Nicolaides, P. Robless, E. Kalodiki, T. S. Elatrozy, et al. Correlates of embolic events detected by means of transcranial Doppler in patients with carotid atheroma. J. Vasc. Surg. 33(1):131–138, 2001.Google Scholar
  180. 180.
    Teng, Z., G. Canton, C. Yuan, M. Ferguson, C. Yang, X. Huang, et al. 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: an in vivo MRI-based 3D FSI study. J. Biomech. Eng. 132(3):031007, 2010.Google Scholar
  181. 181.
    Teng, Z., U. Sadat, Y. Huang, V. E. Young, M. J. Graves, J. Lu, et al. In vivo MRI-based 3D mechanical stress-strain profiles of carotid plaques with juxtaluminal plaque haemorrhage: an exploratory study for the mechanism of subsequent cerebrovascular events. Eur. J. Vasc. Endovasc. Surg. 42(4):427–433, 2011.Google Scholar
  182. 182.
    Torii, R., M. Oshima, T. Kobayashi, K. Takagi, and T. E. Tezduyar. Numerical investigation of the effect of hypertensive blood pressure on cerebral aneurysm—dependence of the effect on the aneurysm shape. Int. J. Numer. Meth. Fluids 54(6–8):995–1009, 2007.MathSciNetMATHGoogle Scholar
  183. 183.
    Valencia, A. A., A. M. Guzmán, E. A. Finol, and C. H. Amon. Blood flow dynamics in saccular aneurysm models of the basilar artery. J. Biomech. Eng. 128(4):516–526, 2006.Google Scholar
  184. 184.
    Valencia, A., D. Ledermann, R. Rivera, E. Bravo, and M. Galvez. Blood flow dynamics and fluid–structure interaction in patient-specific bifurcating cerebral aneurysms. Int. J. Numer. Meth. Fluids 58(10):1081–1100, 2008.MathSciNetMATHGoogle Scholar
  185. 185.
    van der Wal, A. C., and A. E. Becker. Atherosclerotic plaque rupture—pathologic basis of plaque stability and instability. Cardiovasc. Res. 41(2):334–344, 1999.Google Scholar
  186. 186.
    van’t Klooster, R., P. J. H. de Koning, R. A. Dehnavi, J. T. Tamsma, A. de Roos, J. H. C. Reiber, et al. Automatic lumen and outer wall segmentation of the carotid artery using deformable three-dimensional models in MR angiography and vessel wall images. J. Magn. Reson. Imaging 35(1):156–165, 2012.Google Scholar
  187. 187.
    Versluis, A., A. J. Bank, and W. H. Douglas. Fatigue and plaque rupture in myocardial infarction. J. Biomech. 39(2):339–347, 2006.Google Scholar
  188. 188.
    Vonesh, M. J., C. H. Cho, J. V. Pinto, Jr., B. J. Kane, D. S. Lee, S. I. Roth, et al. Regional vascular mechanical properties by 3-D intravascular ultrasound with finite-element analysis. Am. J. Physiol. 272(1 Pt 2):H425–H437, 1997.Google Scholar
  189. 189.
    Vukadinovic, D., S. Rozie, M. van Gils, T. van Walsum, R. Manniesing, A. van der Lugt, et al. Automated versus manual segmentation of atherosclerotic carotid plaque volume and components in CTA: associations with cardiovascular risk factors. Int. J. Cardiovasc. Imaging 28(4):877–887, 2012.Google Scholar
  190. 190.
    Wang, E., T. Nelson, and R. Rauch. Back to elements-tetrahedra vs. hexahedra. In: 2004 International ANSYS Conference Proceedings, 2004.Google Scholar
  191. 191.
    Wei, Y., S. Cotin, J. Allard, L. Fang, C. Pan, and S. Ma. Interactive blood-coil simulation in real-time during aneurysm embolization. Comput. Graph. 35(2):422–430, 2011.Google Scholar
  192. 192.
    Wentzel, J. J., F. J. H. Gijsen, N. Stergiopulos, P. W. Serruys, C. J. Slager, and R. Krams. Shear stress, vascular remodeling and neointimal formation. J. Biomech. 36(5):681–688, 2003.Google Scholar
  193. 193.
    Wentzel, J. J., E. Janssen, J. Vos, J. C. H. Schuurbiers, R. Krams, P. W. Serruys, et al. Extension of increased atherosclerotic wall thickness into high shear stress regions is associated with loss of compensatory remodeling. Circulation 108(1):17–23, 2003.Google Scholar
  194. 194.
    Wintermark, M., S. S. Jawadi, J. H. Rapp, T. Tihan, E. Tong, D. V. Glidden, et al. High-resolution CT imaging of carotid artery atherosclerotic plaques. AJNR Am. J. Neuroradiol. 29(5):875–882, 2008.Google Scholar
  195. 195.
    Wu, W., M. Qi, X.-P. Liu, D.-Z. Yang, and W.-Q. Wang. Delivery and release of nitinol stent in carotid artery and their interactions: a finite element analysis. J. Biomech. 40(13):3034–3040, 2007.Google Scholar
  196. 196.
    Xiang, J., S. K. Natarajan, M. Tremmel, D. Ma, J. Mocco, L. N. Hopkins, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke 42(1):144–152, 2011.Google Scholar
  197. 197.
    Yadav, J. S., M. H. Wholey, R. E. Kuntz, P. Fayad, B. T. Katzen, G. J. Mishkel, et al. Protected carotid-artery stenting versus endarterectomy in high-risk patients. N. Engl. J. Med. 351(15):1493–1501, 2004.Google Scholar
  198. 198.
    Yuan, C., L. M. Mitsumori, K. W. Beach, and K. R. Maravilla. Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 221(2):285–299, 2001.Google Scholar
  199. 199.
    Zarins, C. K., D. P. Giddens, B. K. Bharadvaj, V. S. Sottiurai, R. F. Mabon, and S. Glagov. Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress. Circ. Res. 53(4):502–514, 1983.Google Scholar
  200. 200.
    Zhao, S., L. Gu, and S. R. Froemming. Finite element analysis of the implantation of a self-expanding stent: impact of lesion calcification. J. Med. Devices 6:021001, 2012.Google Scholar
  201. 201.
    Zhao, S. Z., X. Y. Xu, A. D. Hughes, S. A. Thom, A. V. Stanton, B. Ariff, et al. Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. J. Biomech. 33(8):975–984, 2000.Google Scholar
  202. 202.
    Zheng, L., Z. Sun, J. Li, R. Zhang, X. Zhang, S. Liu, et al. Pulse pressure and mean arterial pressure in relation to ischemic stroke among patients with uncontrolled hypertension in rural areas of China. Stroke 39(7):1932–1937, 2008.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Francesco Iannaccone
    • 1
  • Matthieu De Beule
    • 1
    • 2
  • Benedict Verhegghe
    • 1
    • 2
  • Patrick Segers
    • 1
  1. 1.BioMMeda, IBITECHGhent UniversityGhentBelgium
  2. 2.FEopsGhentBelgium

Personalised recommendations