Cardiovascular Engineering and Technology

, Volume 4, Issue 3, pp 257–266 | Cite as

Human Ductus Venosus Velocity Profiles in the First Trimester

  • Paul R. Leinan
  • Torvid Kiserud
  • Leif R. Hellevik


The fluid dynamics in the human fetal ductus venosus in the early stage of pregnancy is not well explored. Consequently, there is an uncertainty in the interpretation of the temporal and spatial velocity variation in the ductus venosus. A robust estimation procedure for non-invasive measurement of the blood flow, based on conventional Doppler ultrasound measurements, is therefore missing. The aim of the present study was to describe the spatial and temporal velocity distribution at the ductus venosus bifurcation for boundary condition typical for fetuses at 11–13 weeks of gestation by means of a mathematical model. In particular we wanted to investigate velocity profiles at the ductus venosus inlet region in early pregnancy under normal conditions, to assess whether robust estimates of velocity profile shape coefficients may be given in order to provide noninvasive volumetric flow rate assessment in the ductus venosus. Such information will be useful in a clinical assessment of the fetus. Our model predicted a close to parabolic velocity profile in the inlet section of the ductus venosus during the cardiac cycle, with a shape factor of 0.53. Our simulations also showed that during atrial contraction (the A-wave), transient simultaneous positive and negative velocities may be observed in the same cross-section, in Womersley-like velocity profiles. Thus, as previous clinical investigators have reported these velocities as either positive or negative, our findings challenge clinical interpretation.


Ductus venosus Velocity profiles First trimester 



The study was supported by a grant from the Western Norway Regional Health Authority (Project 911750).


  1. 1.
    Acharya, G. and T. Kiserud. Pulsations of the ductus venosus blood velocity and diameter are more pronounced at the outlet than at the inlet. Eur. J. Obstet. Gynecol. Reprod. Biol. 84(2):149–154, 1999.CrossRefGoogle Scholar
  2. 2.
    Bellotti, M., G. Pennati, C. Gasperi, M. Bozzo, F. Battaglia, and E. Ferrazzi. Simultaneous measurements of umbilical venous, fetal hepatic, and ductus venosus blood flow in growth-restricted human fetuses. Am. J. Obstet. Gynecol. 190(5):1347–1358, 2004.CrossRefGoogle Scholar
  3. 3.
    Debbaut, C., D. Monbaliu, C. Casteleyn, P. Cornillie, D. Van Loo, B. Masschaele, J. Pirenne, P. Simoens, L. Van Hoorebeke, and P. Segers. From vascular corrosion cast to electrical analog model for the study of human liver hemodynamics and perfusion. IEEE Trans. Biomed. Eng. 58(1):25–35, 2011.CrossRefGoogle Scholar
  4. 4.
    Ebbing, C., S. Rasmussen, K. M. Godfrey, M. A. Hanson, and T. Kiserud. Hepatic artery hemodynamics suggest operation of a buffer response in the human fetus. Reprod. Sci. 15(2):166–178, 2008.CrossRefGoogle Scholar
  5. 5.
    Formaggia, L., A. Quarteroni, and A. Veneziani. Cardiovascular Mathematics: Modeling and Simulation of the Circulatory System. Berlin: Springer, vol. 1, 2009.Google Scholar
  6. 6.
    Godfrey, K. M., G. Haugen, T. Kiserud, H. M. Inskip, C. Cooper, N. C. Harvey, S. R. Crozier, S. M. Robinson, L. Davies, and M. A. Hanson. Fetal liver blood flow distribution: role in human developmental strategy to prioritize fat deposition versus brain development. PloS one. 7(8):e41759, 2012.Google Scholar
  7. 7.
    Grande, M., M. Arigita, V. Borobio, J. M. Jimenez, S. Fernandez, and A. Borrell. First-trimester detection of structural abnormalities and the role of aneuploidy markers. Ultrasound Obstet. Gynecol. 39(2):157–163, 2012.CrossRefGoogle Scholar
  8. 8.
    Haugen, G., T. Kiserud, K. Godfrey, S. Crozier, and M. Hanson. Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet. Gynecol. 24(6):599–605, 2004.CrossRefGoogle Scholar
  9. 9.
    Hecher, K., S. Campbell, R. Snijders, and K. Nicolaides. Reference ranges for fetal venous and atrioventricular blood flow parameters. Ultrasound Obstet. Gynecol. 4(5):381–390, 1994.CrossRefGoogle Scholar
  10. 10.
    Hecher, K., C. M. Bilardo, R. H. Stigter, Y. Ville, B. J. Hackelöer, H. J. Kok, M. V. Senat, and G. H. A. Visser. Monitoring of fetuses with intrauterine growth restriction: a longitudinal study. Ultrasound Obst. Gynecol. 18(6):564–570, 2001.CrossRefGoogle Scholar
  11. 11.
    Hellevik, L., T. Kiserud, F. Irgens, N. Stergiopulos, and M. Hanson. Mechanical properties of the fetal ductus venosus and umbilical vein. Heart Vessels 13(4):175–180, 1998.CrossRefGoogle Scholar
  12. 12.
    Hellevik, L., N. Stergiopulos, T. Kiserud, S. Rabben, S. Eik-Nes, and F. Irgens. A mathematical model of umbilical venous pulsation. J. Biomech. 33(9):1123–1130, 2000.CrossRefGoogle Scholar
  13. 13.
    Hellevik, L., J. Vierendeels, T. Kiserud, N. Stergiopulos, F. Irgens, E. Dick, K. Riemslagh, and P. Verdonck. An assessment of ductus venosus tapering and wave transmission from the fetal heart. Biomech. Model Mechanobiol. 8(6):509–517, 2009.CrossRefGoogle Scholar
  14. 14.
    Hill, L., D. DiNofrio, and D. Guzick. Sonographic determination of first trimester umbilical cord length. J. Clin. Ultrasound 22(7):435–438, 1994.CrossRefGoogle Scholar
  15. 15.
    Hoskins, P. Measurement of arterial blood flow by doppler ultrasound. Clin. Phys. Physiol. Meas. 11:1, 1990.CrossRefGoogle Scholar
  16. 16.
    Kessler, J., S. Rasmussen, and T. Kiserud. The fetal portal vein: normal blood flow development during the second half of human pregnancy. Ultrasound Obstet. Gynecol. 30(1):52–60, 2007a.CrossRefGoogle Scholar
  17. 17.
    Kessler, J., S. Rasmussen, and T. Kiserud. The left portal vein as an indicator of watershed in the fetal circulation: development during the second half of pregnancy and a suggested method of evaluation. Ultrasound Obstet. Gynecol. 30(5):757–764, 2007b.CrossRefGoogle Scholar
  18. 18.
    Kessler, J., S. Rasmussen, K. Godfrey, M. Hanson, and T. Kiserud. Longitudinal study of umbilical and portal venous blood flow to the fetal liver: low pregnancy weight gain is associated with preferential supply to the fetal left liver lobe. Pediatr. Res. 63(3):315, 2008.CrossRefGoogle Scholar
  19. 19.
    Kessler, J., S. Rasmussen, K. Godfrey, M. Hanson, and T. Kiserud. Venous liver blood flow and regulation of human fetal growth: evidence from macrosomic fetuses. Am. J. Obstet. Gynecol. 204:429.e1–7, 2011.Google Scholar
  20. 20.
    Kiserud, T. Fetal venous circulation-an update on hemodynamics. J. Perinatal Med. 28(2):90–96, 2000.CrossRefGoogle Scholar
  21. 21.
    Kiserud, T. Venous hemodynamics. In: Doppler Ultrasound in Obstetrics and Gynecology, edited by D. Maulik and I. Zalud. Berlin: Springer, 2005.Google Scholar
  22. 22.
    Kiserud, T., S. Eik-Nes, H. Blaas, and L. Hellevik. Ultrasonographic velocimetry of the fetal ductus venosus. Lancet 338(8780):1412–1414, 1991.CrossRefGoogle Scholar
  23. 23.
    Kiserud. T., L. Hellevik, S. Eik-Nes, B. Angelsen, and H. Blaas. Estimation of the pressure gradient across the fetal ductus venosus based on doppler velocimetry. Ultrasound Med. Biol. 20(3):225–232, 1994.CrossRefGoogle Scholar
  24. 24.
    Kiserud, T., L. Hellevik, and M. Hanson. Blood velocity profile in the ductus venosus inlet expressed by the mean/maximum velocity ratio. Ultrasound Med. Biol. 24(9):1301–1306, 1998.CrossRefGoogle Scholar
  25. 25.
    Kiserud, T., S. Rasmussen, and S. Skulstad. Blood flow and the degree of shunting through the ductus venosus in the human fetus. Am. J. Obstet. Gynecol. 182(1):147–153, 2000.CrossRefGoogle Scholar
  26. 26.
    Kiserud, T., S. Eik-Nes, H. Blaas, and L. Hellevik. Foramen ovale: an ultrasonographic study of its relation to the inferior vena cava, ductus venosus and hepatic veins. Ultrasound Obstet. Gynecol. 2(6):389–396, 2003a.CrossRefGoogle Scholar
  27. 27.
    Kiserud, T., Ö. Kilavuz, L. Hellevik. Venous pulsation in the fetal left portal branch: the effect of pulse and flow direction. Ultrasound Obstet. Gynecol. 21(4):359–364, 2003b.Google Scholar
  28. 28.
    Kiserud, T., J. Kessler, C. Ebbing, and S. Rasmussen. Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet. Gynecol. 28(2):143–149, 2006.CrossRefGoogle Scholar
  29. 29.
    Kivilevitch. Z., L. Gindes, H. Deutsch, and R. Achiron. In-utero evaluation of the fetal umbilical–portal venous system: two-and three-dimensional ultrasonic study. Ultrasound Obstet. Gynecol. 34(6):634–642, 2009.CrossRefGoogle Scholar
  30. 30.
    Leinan, P. Biomechanical modeling of fetal veins. The umbilical vein and ductus venosu bifurcation. PhD thesis, NNTU, 2012.Google Scholar
  31. 31.
    Leinan, P. R., J. Degroote, T. Kiserud, B. Skallerud, J. Vierendeels, and L. R. Hellevik. Velocity profiles in the human ductus venosus: a numerical fluid structure interaction study. Biomech. Model. Mechanobiol. 1–17, 2013. doi: 10.1007/s10237-012-0460-1.
  32. 32.
    Martinez, J. M., M. Comas, A. Borrell, M. Bennasar, O. Gomez, B. Puerto, and E. Gratacos. Abnormal first-trimester ductus venosus blood flow: a marker of cardiac defects in fetuses with normal karyotype and nuchal translucency. Ultrasound Obstet. Gynecol. 35(3):267–272, 2010.CrossRefGoogle Scholar
  33. 33.
    Matias, A., I. Huggon, J. Areias, N. Montenegro, and K. Nicolaides. Cardiac defects in chromosomally normal fetuses with abnormal ductus venosus blood flow at 10–14 weeks. Ultrasound Obstet. Gynecol. 14(5):307–310, 1999.CrossRefGoogle Scholar
  34. 34.
    Matias, A., N. Montenegro, J. Areias, and L. Leite. Haemodynamic evaluation of the first trimester fetus with special emphasis on venous return. Human Reprod. Update 6(2):177–189, 2000.CrossRefGoogle Scholar
  35. 35.
    Mavrides, E., G. Moscoso, J. Carvalho, S. Campbell, B. Thilaganathan. The anatomy of the umbilical, portal and hepatic venous systems in the human fetus at 14–19 weeks of gestation. Ultrasound Obstet. Gynecol. 18(6):598–604, 2001.CrossRefGoogle Scholar
  36. 36.
    Mavrides, E., G. Moscoso, J. Carvalho, S. Campbell, B. Thilaganathan. The human ductus venosus between 13 and 17 weeks of gestation: histological and morphometric studies. Ultrasound Obstet. Gynecol. 19(1):39–46, 2002.CrossRefGoogle Scholar
  37. 37.
    Nyberg, M., S. Johnsen, S. Rasmussen, and T. Kiserud. Hemodynamics of fetal breathing movements: the inferior vena cava. Ultrasound in Obstet. Gynecol. 38(6):658–664, 2011.CrossRefGoogle Scholar
  38. 38.
    Pennati, G. and R. Fumero. Scaling approach to study the changes through the gestation of human fetal cardiac and circulatory behaviors. Ann. Biomed. Eng. 28(4):442–452, 2000.CrossRefGoogle Scholar
  39. 39.
    Pennati, G., M. Bellotti, E. Ferrazzi, M. Bozzo, G. Pardi, and R. Fumero. Blood flow through the ductus venosus in human fetus: calculation using doppler velocimetry and computational findings. Ultrasound Med. Biol. 24(4):477–487, 1998.CrossRefGoogle Scholar
  40. 40.
    Pennati, G., C. Corno, M. Costantino, and M. Bellotti. Umbilical flow distribution to the liver and the ductus venosus in human fetuses during gestation: an anatomy-based mathematical modeling. Med. Eng. Phys. 25(3):229–238, 2003.CrossRefGoogle Scholar
  41. 41.
    Pennati, G., C. Corsini, D. Cosentino, T. Hsia, V. Luisi, G. Dubini, and F. Migliavacca. Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances results in a critical issue for a virtual surgical planning. Interface Focus 1(3):297–307, 2011.CrossRefGoogle Scholar
  42. 42.
    Reymond, P., F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos. Validation of a one-dimensional model of the systemic arterial tree. Am. J. Physiol. Heart Circul. Physiol. 297(1):H208–H222, 2009.CrossRefGoogle Scholar
  43. 43.
    Rizzo, G., A. Capponi, M. Elena Pietrolucci, and D. Arduini. Umbilical vein blood flow at 11 + 0 to 13 + 6 weeks of gestation. J. Matern. Fetal Neonatal Med. 23(4):315–319, 2010.CrossRefGoogle Scholar
  44. 44.
    Tchirikov, M., S. Kertschanska, H. Stürenberg, and H. Schröder. Liver blood perfusion as a possible instrument for fetal growth regulation. Placenta 23:S153–S158, 2002.CrossRefGoogle Scholar
  45. 45.
    Teixeira, L., J. Leite, M. Viegas, M. Faria, A. Chaves, R. Teixeira, M. Pires, and H. Pettersen. Ductus venosus doppler velocimetry in the first trimester: a new finding. Ultrasound Obstet. Gynecol. 31(3):261–265, 2008.CrossRefGoogle Scholar
  46. 46.
    Westerhof, N., N. Stergiopulos, and M. Noble. Snapshots of Hemodynamics: An Aid for Clinical Research and Graduate Education. Berlin: Springer, 2010.Google Scholar

Copyright information

© Biomedical Engineering Society 2013

Authors and Affiliations

  • Paul R. Leinan
    • 1
  • Torvid Kiserud
    • 2
    • 3
  • Leif R. Hellevik
    • 1
  1. 1.Biomechanics Division, Department of Structural EngineeringThe Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Clinical MedicineUniversity of BergenBergenNorway
  3. 3.Department of Obstetrics and GynecologyHaukeland University HospitalBergenNorway

Personalised recommendations