Gentamicin Reduces Calcific Nodule Formation by Aortic Valve Interstitial Cells In Vitro

  • Aditya Kumar
  • Dena C. Wiltz
  • K. Jane Grande-Allen
Article

Abstract

Gentamicin is a widely employed antibiotic, but may reduce calcium uptake by eukaryotic cells. This study was conducted to determine whether gentamicin reduces calcification by porcine aortic valvular interstitial cells (pAVICs) grown in 2D culture, which is a common model for calcific aortic valve disease (CAVD). The presence of gentamicin (up to 0.2 mM) in the medium of pAVICs cultured for 8 days significantly lowered calcification and alkaline phosphatase content in a dose-dependent manner compared to pAVICs cultured without gentamicin. Gentamicin also significantly increased cell proliferation and apoptosis at concentrations of 0.1–0.2 mM compared to controls. Next, gentamicin was applied to previously calcified pAVIC cultures (grown for 8 days) to determine whether it could stop or reverse the calcification process. Daily application of gentamicin for 8 additional days significantly reduced calcification to below the pre-calcification levels. These results confirm that gentamicin should be used cautiously with in vitro studies of calcification, and suggest that gentamicin may have the ability to reverse calcification by pAVICs. Given the nephrotoxicity and ototoxicity of this antibiotic, its clinical potential for the treatment of calcification in heart valves is limited. However, further investigation of the pathways through which gentamicin alters calcium uptake by valvular cells may provide insight into novel therapies for CAVD.

Keywords

Gentamicin Calcification Mitochondrial calcium uptake Cell culture 

References

  1. 1.
    Adams, H. R., F. R. Goodman, and G. B. Weiss. Alteration of contractile function and calcium ion movements in vascular smooth muscle by gentamicin and other aminoglycoside antibiotics. Antimicrob. Agents Chemother. 5(6):640–646, 1974.CrossRefGoogle Scholar
  2. 2.
    Atchison, W. D., L. Adgate, and C. M. Beaman. Effects of antibiotics on uptake of calcium into isolated nerve terminals. J. Pharmacol. Exp. Ther. 245(2):394–401, 1988.Google Scholar
  3. 3.
    Balakumar, P., A. Rohilla, and A. Thangathirupathi. Gentamicin-induced nephrotoxicity: do we have a promising therapeutic approach to blunt it? Pharmacol. Res. 62(3):179–186, 2010.CrossRefGoogle Scholar
  4. 4.
    Bernardi, P. Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol. Rev. 79(4):1127–1155, 1999.Google Scholar
  5. 5.
    Chang, Y., V. M. Goldberg, and A. I. Caplan. Toxic effects of gentamicin on marrow-derived human mesenchymal stem cells. Clin. Orthop. 45:2242–2249, 2006.Google Scholar
  6. 6.
    Charalampos, A. Role of mitochondria in calcification. Mitochondrial activity distribution in the epiphyseal plate and accumulation of calcium and phosphate ions by chondrocyte mitochondria. Biochem. Biophys. Res. Commun. 46(5):1928–1935, 1972.CrossRefGoogle Scholar
  7. 7.
    Ciceri, P., E. Volpi, I. Brenna, F. Elli, E. Borghi, D. Brancaccio, and M. Cozzolino. The combination of lanthanum chloride and the calcimimetic calindol delays the progression of vascular smooth muscle cells calcification. Biochem. Biophys. Res. Commun. 418(4):770–773, 2012.CrossRefGoogle Scholar
  8. 8.
    Dedkova, E. N., X. Ji, S. L. Lipsius, and L. A. Blatter. Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells. Am. J. Physiol. Cell Physiol. 286(2):406–415, 2004.CrossRefGoogle Scholar
  9. 9.
    Demer, L. Lipid hypothesis of cardiovascular calcification. Circulation. 95:297–298, 1997.CrossRefGoogle Scholar
  10. 10.
    Freeman, R. V., and C. M. Otto. Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation. 111(24):3316–3326, 2005.CrossRefGoogle Scholar
  11. 11.
    Goetz, I. E., R. Moklebust, and C. J. Warren. Effects of some antibiotics on the growth of human diploid skin fibroblasts in cell culture. In Vitro. 15(2):114–119, 1979.CrossRefGoogle Scholar
  12. 12.
    Golub, E. E., and K. Boesze-Battaglia. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop. 18(5):444–448, 2007.CrossRefGoogle Scholar
  13. 13.
    Gotanda, K., T. Yanagisawa, K. Satoh, and N. Taira. Are the cardiovascular effects of gentamicin similar to those of calcium antagonists? Jpn. J. Pharmacol. 47:217–227, 1988.CrossRefGoogle Scholar
  14. 14.
    Grande-Allen, K. J., N. Osman, M. L. Ballinger, H. Dadlani, S. Marasco, and P. J. Little. Glycosaminoglycan synthesis and structure as targets for the prevention of calcific aortic valve disease. Cardiovasc. Res. 76(1):19–28, 2007.CrossRefGoogle Scholar
  15. 15.
    Gu, X., and K. S. Masters. Role of the rho pathway in regulating valvular interstitial cell phenotype and nodule formation. Am. J. Physiol. Heart Circ. Physiol. 300(2):H448–H458, 2011.CrossRefGoogle Scholar
  16. 16.
    Guerraty, M., and E. R. Mohler, III. Models of aortic valve calcification. J. Invest. Med. 55(6):278–283, 2007.CrossRefGoogle Scholar
  17. 17.
    Gunter, T. E., and D. R. Pfeiffer. Mechanisms by which mitochondria transport calcium. Am. J. Physiol. 258(5):C755–C786, 1990.Google Scholar
  18. 18.
    Gunter, T. E., and S. Sheu. Characteristics and possible functions of mitochondrial Ca2 + transport mechanisms. Biochim. Biophys. Acta 1787(11):1291–1308, 2009.CrossRefGoogle Scholar
  19. 19.
    Hahn, F. E., and S. G. Sarre. Mechanism of action of gentamicin. J. Infect. Dis. 119(4):364–369, 1969.CrossRefGoogle Scholar
  20. 20.
    Ince, A., N. Schütze, C. Hendrich, F. Jakob, J. Eulert, and J. F. Löhr. Effect of polyhexanide and gentamicin on human osteoblasts and endothelial cells. Swiss Med. Wkly. 137:139–145, 2007.Google Scholar
  21. 21.
    Ince, A., N. Schütze, N. Karl, J. F. Löhr, and J. Eulert. Gentamicin negatively influenced osteogenic function in vitro. Int. Orthop. 31(2):223–228, 2007.CrossRefGoogle Scholar
  22. 22.
    Isefuku, S., C. J. Joyner, and A. H. Simpson. Gentamicin may have an adverse effect on osteogenesis. J. Orthop. Trauma. 17(3):212–216, 2003.CrossRefGoogle Scholar
  23. 23.
    Jian, B., N. Narula, Q. Li, E. R. Mohler, III, R. J. Levy, and E. R. M. Iii. Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 75:457–465, 2003.CrossRefGoogle Scholar
  24. 24.
    Kagiwada, H., T. Fukuchi, H. Machida, K. Yamashita, and H. Ohgushi. Effect of gentamicin on growth and differentiation of human mesenchymal stem cells. J. Toxicol. Pathol. 21:61–67, 2008.CrossRefGoogle Scholar
  25. 25.
    Kawashima, Y., G. S. G. Géléoc, K. Kurima, V. Labay, A. Lelli, Y. Asai, T. Makishima, D. K. Wu, C. C. D. Santina, J. R. Holt, and A. J. Griffith. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel–like genes. J. Clin. Invest. 121(12):4796–4809, 2011.CrossRefGoogle Scholar
  26. 26.
    Lindroos, M., M. Kupari, J. Heikkilä, and R. Tilvis. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J. Am. Coll. Cardiol. 21(5):1220–1225, 1993.CrossRefGoogle Scholar
  27. 27.
    Magno, A. L., B. K. Ward, and T. Ratajczak. The calcium-sensing receptor : a molecular perspective. Endocr. Rev. 32(1):3–30, 2011.CrossRefGoogle Scholar
  28. 28.
    Marcotti, W., S. M. van Netten, and C. J. Kros. The aminoglycoside antibiotic dihydrostreptomycin rapidly enters mouse outer hair cells through the mechano-electrical transducer channels. J. Physiol. 567(Pt 2):505–521, 2005.CrossRefGoogle Scholar
  29. 29.
    Martínez-Salgado, C., N. Eleno, A. I. Morales, F. Pérez-Barriocanal, M. Arévalo, and J. M. López-Novoa. Gentamicin treatment induces simultaneous mesangial proliferation and apoptosis in rats. Kidney Int. 65(6):2161–2171, 2004.CrossRefGoogle Scholar
  30. 30.
    Miller, J. D., Y. Chu, R. M. Brooks, W. E. Richenbacher, R. Peña-Silva, and D. D. Heistad. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J. Am. Coll. Cardiol. 52(10):843–850, 2008.CrossRefGoogle Scholar
  31. 31.
    Mingeot-Leclercq, M. P., and P. M. Tulkens. Aminoglycosides: nephrotoxicity. Antimicrob. Agents Chemother. 43(5):1003–1012, 1999.Google Scholar
  32. 32.
    Mody, N., F. Parhami, T. Sarafian, and L. Demer. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 31(4):509–519, 2001.CrossRefGoogle Scholar
  33. 33.
    Mohler, III, E. R. Mechanisms of aortic valve calcification. Am. J. Cardiol. 94(11):1396–1402, 2004.CrossRefGoogle Scholar
  34. 34.
    Molostvov, G., S. James, S. Fletcher, J. Bennett, H. Lehnert, R. Bland, and D. Zehnder. Extracellular calcium-sensing receptor is functionally expressed in human artery. Am. J. Physiol. Renal. Physiol. 293(3):F946–F955, 2007.CrossRefGoogle Scholar
  35. 35.
    Nigam, V., and D. Srivastava. Notch1 represses osteogenic pathways in aortic valve cells. J.Mol. Cell Cardiol. 47(6):828–834, 2009.CrossRefGoogle Scholar
  36. 36.
    O’Brien, K. D. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler. Thromb. Vasc. Biol. 26:1721–1728, 2006.CrossRefGoogle Scholar
  37. 37.
    Parsons, T. D., A. L. Obaid, and B. M. Salzberg. Aminoglycoside antibiotics block voltage-dependent calcium channels in intact vertebrate nerve terminals. J. Gen. Physiol. 99(4):491–504, 1992.CrossRefGoogle Scholar
  38. 38.
    Peng, T., and M. Jou. Oxidative stress caused by mitochondrial calcium overload. Ann. N.Y. Acad. Sci. 1201:183–188, 2010.CrossRefGoogle Scholar
  39. 39.
    Pohjolainen, V., P. Taskinen, Y. Soini, J. Rysä, M. Ilves, T. Juvonen, H. Ruskoaho, H. Leskinen, and J. Satta. Noncollagenous bone matrix proteins as a part of calcific aortic valve disease regulation. Hum. Pathol. 39(11):1695–1701, 2008.CrossRefGoogle Scholar
  40. 40.
    Raggio C. L., B. D. Boyan, and A L. Boskey. In vivo hydroxyapatite formation induced by lipids. J. Bone Miner. Res. 1(5): 409–15, 1986.Google Scholar
  41. 41.
    Rajamannan, N. M. Calcific aortic stenosis: lessons learned from experimental and clinical studies. Arterioscler. Thromb. Vasc. Biol. 29(2):162–168, 2009.CrossRefGoogle Scholar
  42. 42.
    Rajamannan, N. M. Calcific aortic valve disease: cellular origins of valve calcification. Arterioscler. Thromb. Vasc. Biol. 31(12):2777–2778, 2011.CrossRefGoogle Scholar
  43. 43.
    Ramsammy, L. S., C. Josepovitz, B. Lane, and G. J. Kaloyanides. Effect of gentamicin on phospholipid metabolism in cultured rabbit proximal tubular cells. Am. J. Physiol. 256(1):204–213, 1989.Google Scholar
  44. 44.
    Rashid, F., M. Kaleem, and B. Bano. Comparative effect of olive oil and fish oil supplementation in combating gentamicin induced nephrotoxicity in rats. IIndian J. Clin. Biochem. 20(1):109–114, 2005.CrossRefGoogle Scholar
  45. 45.
    Rodriguez, C. J., T. M. Bartz, W. T. Longstreth, J. R. Kizer, E. Barasch, D. M. Lloyd-Jones, and J. S. Gottdiener. Association of annular calcification and aortic valve sclerosis with brain findings on magnetic resonance imaging in community dwelling older adults: the cardiovascular health study. J. Am. Coll. Cardiol. 57(21):2172–2180, 2011.CrossRefGoogle Scholar
  46. 46.
    Rustenbeck, I., G. Eggers, H. Reiter, and W. Mu. modulation of mitochondrial calcium transport: I. stimulatory and inhibitory effects of aliphatic polyamines, aminoglucosides and other polyamine analogues on mitochondrial calcium uptake. Biochem. Pharmacol. 56(98):977–985, 1998.CrossRefGoogle Scholar
  47. 47.
    Sastrasinh, M., J. M. Weinbergl, and H. D. Humes. The effect of gentamicin on calcium uptake by renal mitochondria. Life Sci. 30(26):2309–2315, 1982.CrossRefGoogle Scholar
  48. 48.
    Schacht, J. Biochemistry of neomycin ototoxicity. J. Acoust. Soc. Am. 59(4):940–944, 1976.CrossRefGoogle Scholar
  49. 49.
    Schwertz, D., J. Kreisberg, and M. Venkatachalam. Gentamicin-induced alterations in pig kidney epithelial (LLC-PK1) cells in culture. J. Pharmacol. Exp. Ther. 236(1):254–262, 1986.Google Scholar
  50. 50.
    Shioi, A., Y. Nishizawa, S. Jono, H. Koyama, M. Hosoi, and H. Morii. Β-glycerophosphate accelerates calcification in cultured bovine vascular smooth muscle cell. Arterioscler. Thromb. Vasc. Biol. 15(11):2003–2009, 1995.CrossRefGoogle Scholar
  51. 51.
    Somermeyer, M. G., T. C. Knauss, J. M. Weinberg, and H. D. Humes. Characterization of Ca2 + transport in rat renal brush-border membranes and its modulation by phosphatidic acid. Biochem. J. 214(1):37–46, 1983.Google Scholar
  52. 52.
    Speer, M. Y., and C. M. Giachelli. Regulation of cardiovascular calcification. Cardiovasc. Pathol. 13(2):63–70, 2004.CrossRefGoogle Scholar
  53. 53.
    Stephens, E. H., J. L. Carroll, and K. J. Grande-Allen. The use of collagenase III for the isolation of porcine aortic valvular interstitial cells: rationale and optimization. J. Heart Valve Dis. 16(2):175–183, 2007.Google Scholar
  54. 54.
    Takada, A., and J. Schacht. Calcium antagonism and reversibility of gentamicin-induced loss of cochlear microphonics in the guinea pig. Hear. Res. 8:179–186, 1982.CrossRefGoogle Scholar
  55. 55.
    Tercé, F., H. Brun, and D. E. Vance. Requirement of phosphatidylcholine for normal progression through the cell cycle in C3H/10T1/2 fibroblasts. J. Lipid Res. 35(12):2130–2142, 1994.Google Scholar
  56. 56.
    Walsh, J. G., S. P. Cullen, C. Sheridan, A. U. Lüthi, C. Gerner, and S. J. Martin. Executioner caspase-3 and caspase-7 are functionally distinct proteases. PNAS. 105(35):12815–12819, 2008.CrossRefGoogle Scholar
  57. 57.
    Ward, D. T., D. Maldonado-Pérez, L. Hollins, and D. Riccardi. Aminoglycosides induce acute cell signaling and chronic cell death in renal cells that express the calcium-sensing receptor. J. Am. Soc. Nephrol. 16(5):1236–1244, 2005.CrossRefGoogle Scholar
  58. 58.
    Weiss, B., and H. Richard. Alterations by neomycin of 45Ca movements and contractile responses in vascular smooth muscle. J. Pharmacol. Exp. Ther. 188(2):472–480, 1974.Google Scholar
  59. 59.
    Wright, T. M., H. S. Shin, and D. M. Raben. Sustained increase in 1,2-diacylglycerol precedes dna synthesis in epidermal-growth-factor-stimulated fibroblasts. evidence for stimulated phosphatidylcholine hydrolysis. Biochem. J. 267(2):501–507, 1990.Google Scholar
  60. 60.
    Yeung E. W., N. P. Whitehead, T. M. Suchyna, P. a Gottlieb, F. Sachs, and D. G. Allen. Effects of stretch-activated channel blockers on [Ca2 +]I and muscle damage in the mdx mouse. J. Physiol.. 562(Pt 2): 367–80, 2005.Google Scholar
  61. 61.
    Zazueta, C., M. E. Sosa-Torres, F. Correa, and A. Garza-Ortiz. Inhibitory properties of ruthenium amine complexes on mitochondrial calcium uptake. J. Bioenerg. Biomembr. 31(6):551–557, 1999.CrossRefGoogle Scholar
  62. 62.
    Zhao, Y., A. L. Urganus, L. Spevak, S. Shrestha, S. B. Doty, A. L. Boskey, and L. M. Pachman. Characterization of dystrophic calcification induced in mice by cardiotoxin. Calcif. Tissue Int. 85(3):267–275, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Aditya Kumar
    • 1
  • Dena C. Wiltz
    • 1
  • K. Jane Grande-Allen
    • 1
  1. 1.Department of Bioengineering, MS 142Rice UniversityHoustonUSA

Personalised recommendations