Fluid Mechanics of Mixing in the Vertebrobasilar System: Comparison of Simulation and MRI
- 159 Downloads
- 7 Citations
Abstract
Recent magnetic resonance imaging (MRI) studies have demonstrated that perfusion to the posterior fossa of the brain can be surprisingly unilateral, with specific vascular territories supplied largely by a single vertebral artery (VA) rather than a mixture of the two. It has been hyposthesized that this is due to a lack of mixing in the confluence of the VA into the basilar artery (BA), however the local mechanisms of mixing (or lack thereof) have not been previously examined in detail. This study aims to assess the mixing characteristics and hemodynamics of the vertebrobasilar junction using subject specific computational fluid dynamics (CFD) simulations, and perform quantitative comparisons to arterial spin labeling (ASL) MRI measurements. Subject specific CFD simulations and unsteady particle tracking were performed to quantitatively evaluate vertebrobasilar mixing in four subjects. Phase-contrast MRI was used to assign inflow boundary conditions. A direct comparison of the fractional flow contributions from the VAs was performed against perfusion maps generated via vessel-encoded pseudo-continuous arterial spin labeling (VEPCASL) MRI. The laterality of VA blood supply in 7/8 simulated cerebellar hemispheres and 5/7 simulated cerebral hemispheres agree with ASL data. Whole brain laterality of the VA supply agrees within 5% for measured and computed values for all patients. However, agreement is not as strong when comparing perfusion to individual regions. Simulations were able to accurately predict laterality of VA blood supply in four regions of interest and confirm ASL results, showing that very little mixing occurs at the vertebrobasilar confluence. Additional particle tracking analysis using Lagrangian coherent structures is used to augment these findings and provides further physical insight that complements current in vivo imaging techniques. A quantitative mix-norm measure was used to compare results, and sensitivity analysis was performed to assess changes in the results with pertubations in the boundary condition values.
Keywords
Computational fluid dynamics Arterial spin labeling MRI Lagrangian coherent structures Fluid mixing Vertebral artery Basilar arteryNotes
Acknowledgments
Support for this work was provided by a Burroughs Wellcome Fund Career Award at the Scientific Interface, a UCSD Collaboratories Grant and NIH grant R01EB002096. The authors gratefully acknowledge the use of software from the Simvascular open source project (simtk.org), and the convection-diffusion code written by Mahdi Esmaily Moghadam.
References
- 1.Arzani, A., P. Dyverfeldt, T. Ebbers, and S. C. Shadden. In vivo validation of numerical prediction for turbulence intensity in an aortic coarctation. Ann. Biomed. Eng. 40(4):860–870, 2012.CrossRefGoogle Scholar
- 2.Bazilevs, Y., M. C. Hsu, D. J. Benson, S. Sankaran, and A. L. Marsden. Computational fluid-structure interaction: methods and application to a total cavopulmonary connection. Comput. Mech. 77–89, 2009.Google Scholar
- 3.Bazilevs, Y., M.-C. Hsu, Y. Zhang, W. Wang, X. Liang, T. Kvamsdal, R. Brekken, and J. Isaksen. A fully-coupled fluid-structure interaction simulation of cerebral aneurysms. Comput. Mech. 46:3–16, 2010. doi: 10.1007/s00466-009-0421-4.MathSciNetMATHCrossRefGoogle Scholar
- 4.Boussel, L., V. Rayz, A. Martin, G. Acevedo-Bolton, M. T. Lawton, R. Higashida, W. S. Smith, W. L. Young, and D. Saloner. Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn. Reson. Med. 61(2):409–417, 2009.CrossRefGoogle Scholar
- 5.Brooks, A. N., and T. J. R. Hughes. Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 1982.Google Scholar
- 6.Cebral, J. R., M. A. Castro, J. E. Burgess, R. S. Pergolizzi, M. J. Sheridan, and C. M. Putman. Characterization of cerebral aneurysms for assessing risk of rupture by using patient-specific computational hemodynamics models. Am. J. Neuroradiol. 26:2550–2559, 2005.Google Scholar
- 7.Chen, Y., D. J. J. Wang, and J. A. Detre. Testretest reliability of arterial spin labeling with common labeling strategies. J. Mag. Reson. Imaging 33(4):940–949, 2011.Google Scholar
- 8.Colton, C. K., K. A. Smith, E. R. Merrill, and S. Friedman. Diffusion of urea in flowing blood. AIChE J. 17(4):800–808, 1971.Google Scholar
- 9.Davies, N. P., and P. Jezzard. Selective arterial spin labeling (SASL): perfusion territory mapping of selected feeding arteries tagged using two-dimensional radiofrequency pulses. Magn. Reson. Med. 49(6):1133–1142, 2003.CrossRefGoogle Scholar
- 10.del Alamo, J. C., A. L. Marsden, and J. C. Lasheras. Recent advances in the application of computational mechanics to the diagnosis and treatment of cardiovascular disease. Revista Espanola De Cardiologia 781–805, 2009.Google Scholar
- 11.Detre, J. A., J. S. Leigh, D. S. Williams, and A. P. Koretsky. Perfusion imaging. Magn. Reson. Med. 23(1):37–45, 1992.CrossRefGoogle Scholar
- 12.Eastwood, J. D., C. A. Holder, P. A. Hudgins, and A. W. Song. Magnetic resonance imaging with lateralized arterial spin labeling. Magn. Reson. Imaging 20(8):583–586, 2002.CrossRefGoogle Scholar
- 13.Ford, M. D., N. Alperin, S. H. Lee, D. W. Holdsworth, and D. A. Steinman. Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26(4):477–488, 2005.CrossRefGoogle Scholar
- 14.Gunther, M. Efficient visualization of vascular territories in the human brain by cycled arterial spin labeling MRI. Magn. Reson. Med. 56(3):671–675, 2006CrossRefGoogle Scholar
- 15.Hendrikse, J., J. van der Grond, H. Lu, P. C. van Zijl, and X. Golay. Flow territory mapping of the cerebral arteries with regional perfusion MRI. Stroke 35(4):882–887, 2004.CrossRefGoogle Scholar
- 16.Jansen, K. E., C. H. Whiting, and G. M. Hulbert. A generalized method for integrating the filtered navierstokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190(34):305–319, 2000.Google Scholar
- 17.Kansagra, A. P., and E. C. Wong. Mapping of vertebral artery perfusion territories using arterial spin labeling MRI. J. Magn. Reson. Imaging 28(3):762–766, 2008.CrossRefGoogle Scholar
- 18.Kansagra, A. P., and E. C. Wong. Characterization of vascular territory changes following carotid artery compression using arterial spin labeling MRI. 2009.Google Scholar
- 19.Krijger, J. K., B. Hillen, and H. W. Hoogstraten. Mathematical models of the flow in the basilar artery. J. Biomech. 22(11–12):1193–1202, 1989.CrossRefGoogle Scholar
- 20.Krijger, J. K., R. M. Heethaar, B. Hillen, H. W. Hoogstraten, and J. Ravensbergen. Computation of steady three-dimensional flow in a model of the basilar artery. J. Biomech. 25(12):1451–1465, 1992.CrossRefGoogle Scholar
- 21.Ku, J. P., M. T. Draney, F. R. Arko, W. A. Lee, F. P. Chan, N. J. Pelc, C. K. Zarins, and C. A. Taylor. In vivo validation of numerical prediction of blood flow in arterial bypass grafts. Ann. Biomed. Eng. 30(6):743–52, 2002.CrossRefGoogle Scholar
- 22.Ku, J. P., C. J. Elkins, and C. A. Taylor. Comparison of CFD and MRI flow and velocities in an in vitro large artery bypass graft model. Ann. Biomed. Eng. 33(3):257–269, 2005.CrossRefGoogle Scholar
- 23.Kung, E., A. Les, C. Figueroa, F. Medina, K. Arcaute, R. Wicker, M. McConnell, and C. Taylor. In vitro validation of finite element analysis of blood flow in deformable models. Ann. Biomed. Eng. 39:1947–1960, 2011. 10.1007/s10439-011-0284-7.Google Scholar
- 24.Long C. C., M.-C. Hsu, Y. Bazilevs, J. A. Feinstein, and A. L. Marsden. Fluidstructure interaction simulations of the fontan procedure using variable wall properties. Int. J. Numer. Methods Biomed. Eng. 28(5):513–527, 2012.MathSciNetMATHCrossRefGoogle Scholar
- 25.Lonyai, A., A. Dubin, J. Feinstein, C. Taylor, and S. Shadden. New insights into pacemaker lead-induced venous occlusion: simulation-based investigation of alterations in venous biomechanics. Cardiovasc. Eng. 84–90, 2010.Google Scholar
- 26.Lutz, R. J., K. Warren, F. Balis, N. Patronas, and R. L. Dedrick. Mixing during intravertebral arterial infusions in an in vitro model. J. Neurooncol. 58(2):95–106, 2002.CrossRefGoogle Scholar
- 27.Marsden, A. L., M. Wang, J. E. Dennis, and P. Moin. Optimal aeroacoustic shape design using the surrogate management framework. Optimiz. Eng. 235–262, 2004.Google Scholar
- 28.Marsden, A. L., A. J. Bernstein, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Large differences in efficiency among Fontan patients demonstrated in patient specific models of blood flow simulations. Circulation 480–480, 2007.Google Scholar
- 29.Marsden, A. L., I. E. Vignon-Clementel, F. P. Chan, J. A. Feinstein, and C. A. Taylor. Effects of exercise and respiration on hemodynamic efficiency in CFD simulations of the total cavopulmonary connection. Ann. Biomed. Eng. 250–263, 2007.Google Scholar
- 30.Marsden, A. L., M. Wang, J. E. Dennis, and P. Moin. Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation. J. Fluid Mech. 13–36, 2007.Google Scholar
- 31.Marsden, A. L., J. A. Feinstein, and C. A. Taylor. A computational framework for derivative-free optimization of cardiovascular geometries. Comput. Methods Appl. Mech. Eng. 1890–1905, 2008.Google Scholar
- 32.Marsden, A. L., A. J. Bernstein, V. M. Reddy, S. C. Shadden, R. L. Spilker, F. P. Chan, C. A. Taylor, and J. A. Feinstein. Evaluation of a novel Y-shaped extracardiac fontan baffle using computational fluid dynamics. J. Thorac. Cardiovasc. Surg. 394–U187, 2009.Google Scholar
- 33.Marsden, A. L., V. M. Reddy, S. C. Shadden, F. P. Chan, C. A. Taylor, and J. A. Feinstein. A new multiparameter approach to computational simulation for fontan assessment and redesign. Congenit. Heart Dis. 5(2):104–117, 2010.CrossRefGoogle Scholar
- 34.Mathew, G., L. Petzold, and S. Serban. Computational techniques for quantification and optimization of mixing in microfluidc devices. 2002.Google Scholar
- 35.Mathew, G., I. Mezić, and L. Petzold. A multiscale measure for mixing. Phys. D: Nonlinear Phenom. 2005.Google Scholar
- 36.Sankaran, S., C. Audet, and A. L. Marsden. A method for stochastic constrained optimization using derivative-free surrogate pattern search and collocation. J. Comput. Phys. 4664–4682, 2010.Google Scholar
- 37.Sankaran, S., and A. L. Marsden. A stochastic collocation method for uncertainty quantification and propagation in cardiovascular simulations. J. Biomech. Eng. 133(3):031001, 2011CrossRefGoogle Scholar
- 38.Schmidt, J. P., S. L. Delp, M. A. Sherman, C. A. Taylor, V. S. Pande, and R. B. Altman. The simbios national center: systems biology in motion. Proc. IEEE Inst. Electr. Electron. Eng. 96(8):1266, 2008Google Scholar
- 39.Shadden, S .C., and C.A. Taylor (2008) Characterization of coherent structures in the cardiovascular system. Ann. Biomed. Eng. 36(7):1152–1162.CrossRefGoogle Scholar
- 40.Shadden, S. C., F. Lekien, and J. E. Marsden. Definition and properties of lagrangian coherent structures from finite-time lyapunov exponents in two-dimensional aperiodicflows. Phys. D: Nonlinear Phenom. 212(34):271–304, 2005.Google Scholar
- 41.Shadden, S. C., and V. C. Flow. (Version 1) [Computer Software]. http://mmae.iit.edu/shadden/software/, 2010.
- 42.Spilt, A., F. M. A. Box, R. J. van der Geest, J. H. C. Reiber, P. Kunz, A. M. Kamper, G. J. Blauw, and Mark A. van Buchem. Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J. Magn. Reson. Imaging 16(1):1–5, 2002.Google Scholar
- 43.Steinman D. A., J. S. Milner, C. J. Norley, S. P.Lownie, and D. W. Holdsworth. Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. Am. J. Neuroradiol. 24:559–566, 2003. Google Scholar
- 44.Vignon-Clementel I. E., C. A. Figueroa, K. E. Jansen, and C. A. Taylor. Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries. Comput. Methods Biomech. Biomed. Eng. 13(5):625–640, 2010.CrossRefGoogle Scholar
- 45.Wentland, A. L., O. Wieben, F. R. Korosec, and V. M. Haughton. Accuracy and reproducibility of phase-contrast mr imaging measurements for csf flow. Am. J. Neuroradiol. 31:1331–1336, 2010.CrossRefGoogle Scholar
- 46.Werner, R., K. Alfke, T. Schaeffter, A. Nabavi, H. M. Mehdorn, and O. Jansen. Brain perfusion territory imaging applying oblique-plane arterial spin labeling with a standard send/receive head coil. Magn. Reson. Med. 52(6):1443–1447, 2004.CrossRefGoogle Scholar
- 47.Werner, R., D. G. Norris, K. Alfke, H. M. Mehdorn, and O. Jansen. Continuous artery-selective spin labeling (CASSL). Magn. Reson. Med. 53(5):1006–1012, 2005.CrossRefGoogle Scholar
- 48.Williams, D. S., J. A. Detre, J. S. Leigh, and A. P. Koretsky. Magnetic resonance imaging of perfusion using spin inversion of arterial water. Proc. Natl Acad. Sci. USA. 89(1):212–216, 1991.CrossRefGoogle Scholar
- 49.Wong, E. C. Vessel-encoded arterial spin-labeling using pseudocontinuous tagging. Magn. Reson. Med. 58(6):1086–1091, 2007.CrossRefGoogle Scholar
- 50.Yang, W. G., J. A. Feinstein, and A. L. Marsden. Constrained optimization of an idealized Y-shaped baffle for the Fontan surgery at rest and exercise. Comput. Methods Appl. Mech. Eng. 2135–2149, 2010.Google Scholar
- 51.Yang, W., I. E. Vignon-Clementel, G. Troianowski, V. M. Reddy, J. A. Feinstein, and A. L. Marsden. Hepatic blood flow distribution and performance in conventional and novel Y-graft Fontan geometries: a case series computational fluid dynamics study. J. Thorac. Cardiovasc. Surg. 143(5):1086–1097, 2012.CrossRefGoogle Scholar
- 52.Zaharchuk, G., P. J. Ledden, K. K. Kwong, T. G. Reese, B. R. Rosen, and L. L. Wald. Multislice perfusion and perfusion territory imaging in humans with separate label and image coils. Magn. Reson. Med. 41(6):1093–1098, 1999.CrossRefGoogle Scholar
- 53.Zimine, I., E. T. Petersen, and X. Golay. Dual vessel arterial spin labeling scheme for regional perfusion imaging. Magn. Reson. Med. 56(5):1140–1144, 2006.CrossRefGoogle Scholar