Cardiovascular Engineering and Technology

, Volume 3, Issue 4, pp 374–387 | Cite as

A Computational Test-Bed to Assess Coronary Stent Implantation Mechanics Using a Population-Specific Approach

  • C. ConwayEmail author
  • F. Sharif
  • J. P. McGarry
  • P. E. McHugh


The implantation behaviour of coronary stents is of great interest to clinicians and engineers alike as in-stent restenosis (ISR) remains a critical issue with the community. ISR is hypothesized to occur for reasons that include injury to the vessel wall caused by stent placement. To reduce the incidence of ISR, improved design and testing of coronary stents is needed. This research aims to facilitate more comprehensive evaluation of stents in the design phase, by generating more realistic arterial environments and corresponding stress states than have been considered heretofore, as a step towards reducing the prevalence of ISR. Furthermore it proposes improvements to the current requirements for coronary stent computational stress analyses as set out by the Food and Drug Administration (FDA). A systematic geometric test-bed with varying levels of arterial curvature and stenosis severity is developed and used to evaluate the implantation behaviour of two stent designs using finite element analysis. A parameter study on atherosclerotic tissue behaviour is also carried out. Results are analysed using tissue damage estimates and lumen gain comparisons for each design. Results indicate that stent design does not have a major impact on lumen gain behaviour but may have an influence on the potential for tissue damage. The level of stenosis in the arterial segments is seen to have a strong impact on the results while the effects of arterial curvature appear to be design dependent.


Finite element analysis Coronary artery Atherosclerosis Stent 



The authors would like to acknowledge funding from the Irish Research Council for Science, Engineering and Technology under the Embark Initiative (C. Conway) and the SFI/HEA Irish Centre for High-End Computing for the provision of computational facilities and support.


  1. 1.
    Ambrose, J. A., S. L. Winters, R. R. Arora, et al. Angiographic evolution of coronary artery morphology in unstable angina. J. Am. Coll. Cardiol. 7:472–478, 1986.CrossRefGoogle Scholar
  2. 2.
    Aoki, J., G. Nakazawa, K. Tanabe, et al. Incidence and clinical impact of coronary stent fracture after sirolimus-eluting stent implantation. Cath. Cardiovasc. Interv. 69:380–386, 2007.CrossRefGoogle Scholar
  3. 3.
    Bedoya, J., C. A. Meyer, L. H. Timmins, et al. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765, 2006.CrossRefGoogle Scholar
  4. 4.
    Brauer, H., J. Stolpmann, H. Hallmann, et al. Measurement and numerical simulation of the dilatation behaviour of coronary stents. Materialwissensch. Werkstofftech. 30:876–885, 1999.CrossRefGoogle Scholar
  5. 5.
    Capelli, C., F. Gervaso, L. Petrini, et al. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31:441–447, 2009.CrossRefGoogle Scholar
  6. 6.
    Chua, S. N. D., B. J. MacDonald, and M. S. J. Hashmi. Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. J. Mater. Process. Technol. 155–156:1772–1779, 2004.CrossRefGoogle Scholar
  7. 7.
    Dassault Systemes. Abaqus V6.10 Documentation. 2010.Google Scholar
  8. 8.
    De Beule, M., P. Mortier, S. G. Carlier, et al. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41:383–389, 2008.CrossRefGoogle Scholar
  9. 9.
    de Feyter, P., J. Vos, and B. Rensing. Anti-restenosis trials. Curr. Interv. Cardiol. Rep. 2:326–331, 2000.Google Scholar
  10. 10.
    Early, M., and D. J. Kelly. The role of vessel geometry and material properties on the mechanics of stenting in the coronary and peripheral arteries. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 224:465–476, 2010.CrossRefGoogle Scholar
  11. 11.
    Etave, F., G. Finet, M. Boivin, et al. Mechanical properties of coronary stents determined by using finite element analysis. J. Biomech. 34:1065–1075, 2001.CrossRefGoogle Scholar
  12. 12.
    FDA. Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems. Accessed 25 Jun 2012.
  13. 13.
    Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.CrossRefGoogle Scholar
  14. 14.
    Gastaldi, D., S. Morlacchi, R. Nichetti, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9:551–561, 2010.CrossRefGoogle Scholar
  15. 15.
    Gervaso, F., C. Capelli, L. Petrini, et al. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41:1206–1212, 2008.CrossRefGoogle Scholar
  16. 16.
    Gijsen, F., F. Migliavacca, S. Schievano, et al. Simulation of stent deployment in a realistic human coronary artery. BioMed. Eng. Oncoll. 7, 2008. doi: 10.1186/1475-925X-7-23.
  17. 17.
    Gould, K. L., and K. Lipscomb. Effects of coronary stenoses on coronary flow reserve and resistance. Am. J. Cardiol. 34:48–55, 1974.CrossRefGoogle Scholar
  18. 18.
    Gu, L., S. Zhao, A. K. Muttyam, et al. The relation between the arterial stress and restenosis rate after coronary stenting. J. Med. Dev., Trans. ASME. 4, 2010.Google Scholar
  19. 19.
    Harewood, F., J. Grogan, and P. McHugh. A multiscale approach to failure assessment in deployment for cardiovascular stents. J. Multi Model. 2:1–22, 2010.CrossRefGoogle Scholar
  20. 20.
    Hoffmann, R., G. S. Mintz, G. R. Dussaillant, et al. Patterns and mechanisms of in-stent restenosis: a serial intravascular ultrasound study. Circulation 94:1247–1254, 1996.CrossRefGoogle Scholar
  21. 21.
    Holzapfel, G. A., G. Sommer, C. T. Gasser, et al. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289:H2048–H2058, 2005.Google Scholar
  22. 22.
    Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.CrossRefGoogle Scholar
  23. 23.
    Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127:166–180, 2005.CrossRefGoogle Scholar
  24. 24.
    Holzapfel, G. A., M. Stadler, and C. A. J. Schulze-Bauer. A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Ann. Biomed. Eng. 30:753–767, 2002.CrossRefGoogle Scholar
  25. 25.
    Jasti, V., E. Ivan, V. Yalamanchili, et al. Correlations between fractional flow reserve and intravascular ultrasound in patients with an ambiguous left main coronary artery stenosis. Circulation 110:2831–2836, 2004.CrossRefGoogle Scholar
  26. 26.
    Kasiri, S., and D. J. Kelly. An argument for the use of multiple segment stents in curved arteries. J. Biomech. Eng. 133, 2011.Google Scholar
  27. 27.
    Kiousis, D. E., T. C. Gasser, and G. A. Holzapfel. A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Ann. Biomed. Eng. 35:1857–1869, 2007.CrossRefGoogle Scholar
  28. 28.
    Kiousis, D. E., A. R. Wulff, and G. A. Holzapfel. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Ann. Biomed. Eng. 37:315–330, 2009.CrossRefGoogle Scholar
  29. 29.
    Lally, C., F. Dolan, and P. J. Prendergast. Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38:1574–1581, 2005.CrossRefGoogle Scholar
  30. 30.
    Lanzer, P., F. J. H. Gijsen, L. D. T. Topoleski, et al. Call for standards in technical documentation of intracoronary stents. Herz 35:27–33, 2010.CrossRefGoogle Scholar
  31. 31.
    Laroche, D., S. Delorme, T. Anderson, et al. Computer prediction of friction in balloon angioplasty and stent implantation. Biomed. Simulat. 4072:1–8, 2006.CrossRefGoogle Scholar
  32. 32.
    Lemos, P. A., F. Saia, J. M. R. Ligthart, et al. Coronary restenosis after sirolimus-eluting stent implantation. Circuation 108:257–260, 2003.CrossRefGoogle Scholar
  33. 33.
    Loree, H. M., A. J. Grodzinsky, S. Y. Park, et al. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.CrossRefGoogle Scholar
  34. 34.
    Lowe, H. C., S. N. Oesterle, and L. M. Khachigian. Coronary in-stent restenosis: current status and future strategies. J. Am. Coll. Cardiol. 39:183–193, 2002.CrossRefGoogle Scholar
  35. 35.
    Martin, D., and F. J. Boyle. Computational structural modelling of coronary stent deployment: a review. Comp. Methods Biomech. Biomed. Eng. 14:331–348, 2011.CrossRefGoogle Scholar
  36. 36.
    McGarry, J. P., B. P. O’Donnell, P. E. McHugh, et al. Computational examination of the effect of material inhomogeneity on the necking of stent struts under tensile loading. J. Appl. Mech. 74:978–989, 2007.CrossRefGoogle Scholar
  37. 37.
    Migliavacca, F., L. Petrini, M. Colombo, et al. Mechanical behavior of coronary stents investigated through the finite element method. J. Biomech. 35:803–811, 2002.CrossRefGoogle Scholar
  38. 38.
    Migliavacca, F., L. Petrini, P. Massarotti, et al. Stainless and shape memory alloy coronary stents: a computational study on the interaction with the vascular wall. Biomech. Model. Mechanobiol. 2, 2004. doi: 10.1007/s10237-004-0039-6.
  39. 39.
    Migliavacca, F., L. Petrini, V. Montanari, et al. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 27:13–18, 2005.CrossRefGoogle Scholar
  40. 40.
    Moreno, P. R., I. F. Palacios, M. N. Leon, et al. Histopathologic comparison of human coronary in-stent and post-balloon angioplasty restenotic tissue. Am. J. Cardiol. 84:462–466, 1999.CrossRefGoogle Scholar
  41. 41.
    Mortier, P., M. De Beule, D. Van Loo, et al. Finite element analysis of side branch access during bifurcation stenting. Med. Eng. Phys. 31:434–440, 2009.CrossRefGoogle Scholar
  42. 42.
    Mortier, P., G. A. Holzapfel, M. De Beule, et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38:88–99, 2010.CrossRefGoogle Scholar
  43. 43.
    Ong, A. T. L., R. T. Van Domburg, J. Aoki, et al. Sirolimus-eluting stents remain superior to bare-metal stents at two years: medium-term results from the Rapamycin-Eluting Stent Evaluated at Rotterdam Cardiology Hospital (RESEARCH) registry. J. Am. Coll. Cardiol. 47:1356–1360, 2006.CrossRefGoogle Scholar
  44. 44.
    Pant, S., N. W. Bressloff, and G. Limbert. Geometry parameterization and multidisciplinary constrained optimization of coronary stents. Biomech. Model. Mechanobiol. 2011Google Scholar
  45. 45.
    Pericevic, I., C. Lally, D. Toner, et al. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med. Eng. Phys. 31:428–433, 2009.CrossRefGoogle Scholar
  46. 46.
    Petrini, L., F. Migliavacc, and S. Schievano, et al. Computational analyses of intravascular stents. Biomech. Appl. Comput. Asst. Surg. 61–76, 2005.Google Scholar
  47. 47.
    Pfisterer, M. E. Late stent thrombosis after drug-eluting stent implantation for acute myocardial infarction a new red flag is raised. Circulation 118:1117–1119, 2008.CrossRefGoogle Scholar
  48. 48.
    Serruys, P. W. CAAS 2D/3D QCA Bifurcation analysis approach. In: European Bifurcation Club, EBC. Prague: 2008.Google Scholar
  49. 49.
    Shaikh, F., R. Maddikunta, M. Djelmami-Hani, et al. Stent fracture, an incidental finding or a significant marker of clinical in-stent restenosis? Cath. Cardiovasc. Interv. 71:614–618, 2008.CrossRefGoogle Scholar
  50. 50.
    Takashima, K., T. Kitou, K. Mori, et al. Simulation and experimental observation of contact conditions between stents and artery models. Med. Eng. Phys. 29:326–335, 2007.CrossRefGoogle Scholar
  51. 51.
    Tan, L. B., D. C. Webb, K. Kormi, et al. A method for investigating the mechanical properties of intracoronary stents using finite element numerical simulation. Int. J. Cardiol. 78:51–67, 2001.CrossRefGoogle Scholar
  52. 52.
    Thury, A., G. van Langenhove, S. G. Carlier, et al. High shear stress after successful balloon angioplasty is associated with restenosis and target lesion revascularization. Am. Heart J. 144:136–143, 2002.CrossRefGoogle Scholar
  53. 53.
    Timmins, L. H., C. A. Meyer, M. R. Moreno, et al. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics. J. Endovasc. Ther. 15:643–654, 2008.CrossRefGoogle Scholar
  54. 54.
    Weissman, N. J., R. L. Wilensky, J.-F. Tanguay, et al. Extent and distribution of in-stent intimal hyperplasia and edge effect in a non-radiation stent population. Am. J. Cardiol. 88:248–252, 2001.CrossRefGoogle Scholar
  55. 55.
    Wentzel, J. J., F. J. H. Gijsen, N. Stergiopulos, et al. Shear stress, vascular remodeling and neointimal formation. J. Biomech. 36:681–688, 2003.CrossRefGoogle Scholar
  56. 56.
    Wessely, R. New drug-eluting stent concepts. Nat. Rev. Cardiol. 7:194–203, 2010.CrossRefGoogle Scholar
  57. 57.
    WHO. World Health Report 2004: Changing History. Published Online First: 2004.internal-pdf://World Health Report 2004-1247297536/World Health Report 2004.pdf.Google Scholar
  58. 58.
    Wu, W., W.-Q. Wang, D.-Z. Yang, et al. Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 40:2580–2585, 2007.MathSciNetCrossRefGoogle Scholar
  59. 59.
    Zahedmanesh, H., D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery—determination of the optimum modelling strategy. J. Biomech. 43:2126–2132, 2010.CrossRefGoogle Scholar
  60. 60.
    Zahedmanesh, H., and C. Lally. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med. Biol. Eng. Comp. 47:385–393, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • C. Conway
    • 1
    Email author
  • F. Sharif
    • 2
  • J. P. McGarry
    • 1
  • P. E. McHugh
    • 1
  1. 1.Biomechanics Research Centre (BMEC), Mechanical and Biomedical Engineering, College of Engineering and InformaticsNational University of IrelandGalwayIreland
  2. 2.HRB Clinical Research Facility GalwayNational University of IrelandGalwayIreland

Personalised recommendations