Cardiovascular Engineering and Technology

, Volume 3, Issue 3, pp 269–281 | Cite as

Impact of Pulmonary Venous Locations on the Intra-Atrial Flow and the Mitral Valve Plane Velocity Profile

  • Sigrid K. Dahl
  • Espen Thomassen
  • Leif Rune Hellevik
  • Bjørn Skallerud


In this paper we present a three-dimensional computational fluid dynamics (CFD) framework of the left atrium (LA) and its pulmonary veins (PVs). The framework uses magnetic resonance imaging (MRI) to render the subject-specific atrial and venous geometries. The aim was first to investigate the diastolic flow field in an anatomically representative model of the LA and PVs. Second, to investigate the impact of different positions of the PVs on the intra-atrial flow and on the resulting velocity distribution at the mitral valve (MV) plane. Three 3D models with different venous entry locations were created for this purpose. In the model with anatomically based PV positions, the velocity profile at the MV plane showed qualitatively good agreement with the MRI flow measurements. When comparing the flow field in the three models, the results clearly illustrate that the PVs have a significant impact on the intra-atrial flow and the final velocity profile at the MV plane. Because the interpatient variability in PV number and branching patterns is large, the velocity profile at the MV plane should be considered as a subject-specific property. Therefore, we suggest that in order to obtain a physiological correct simulation of ventricular filling and MV opening dynamics, a subject-specific representation of the atrial and venous anatomies should be included in the simulation model.


Left atrium Intra-atrial flow Pulmonary veins Mitral valve plane Computational fluid dynamics Magnetic resonance imaging 



The authors would like to express their gratitude to MD, PhD Brage Amundsen, Dept. of Circulation and Medical Imaging, NTNU, for performing the MRI recordings at St.Olavs University Hospital, Trondheim, Norway, and to Prof.em. Tor Ytrehus at the Fluids Engineering Group, NTNU, for all the fruitful discussions.


  1. 1.
    Appleton, C. P., L. K. Hatle, and R. L. Popp. Relation of transmitral flow velocity patterns to left ventricular diastolic function: new insights from a combined hemodynamic and doppler echocardiographic study. J. Am. Coll. Cardiol. 12(2):426–440, 1988.CrossRefGoogle Scholar
  2. 2.
    Blume, G. G., C. J. Mcleod, M. E. Barnes, J. B. Seward, P. A. Pellikka, P. M. Bastiansen, and T. S. Tsang. Left atrial function: physiology, assessment, and clinical implications. Eur. J. Echocardiogr. 12(6):421–430, 2011.CrossRefGoogle Scholar
  3. 3.
    Calkins, H., S. Y. Ho, J. A. Cabrera, P. D. Bella, J. Farré, J. Kautzner, and P. Tchou. Anatomy of the Left Atrium and Pulmonary Veins. Blackwell Publishing Ltd, Oxford, UK, Ch. 1, 2008.Google Scholar
  4. 4.
    Dahl, S. K. 2012. Numerical simulations of blood flow in the left side of the heart. Ph.D. thesis, Norwegian University of Science and Technology.Google Scholar
  5. 5.
    Doenst, T., K. Spiegel, M. Reik, M. Markl, J. Hennig, S. Nitzsche, F. Beyersdorf, and H. Oertel. Fluid-dynamic modeling of the human left ventricle: methodology and application to surgical ventricular reconstruction. Ann. Thorac. Surg. 87:1187–1195, 2009.CrossRefGoogle Scholar
  6. 6.
    Domenichini, F., and G. Pedrizzetti. Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3d shape. Comput. Methods Biomech. Biomed. Eng. 14(1):91–101, 2011.CrossRefGoogle Scholar
  7. 7.
    Fyrenius, A., L. Wigström, T. Ebbers, M. Karlsson, J. Engvall, and A. Bolger. Three dimensional flow in the human left atrium. Heart 86(4):448–455, 2001.CrossRefGoogle Scholar
  8. 8.
    Heiberg, E., J. Sjogren, M. Ugander, M. Carlsson, H. Engblom, and H. Arheden. Design and validation of segment—freely available software for cardiovascular image analysis. BMC Med. Imaging 10(1):1, 2010.CrossRefGoogle Scholar
  9. 9.
    Jeong, J., and F. Hussain. On the definition of a vortex. J. Fluid Mech. 285:69–94, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kato, R., L. Lickfett, G. Meininger, T. Dickfeld, R. Wu, G. Juang, P. Angkeow, J. LaCorte, D. Bluemke, R. Berger, H. R. Halperin, and H. Calkins. Pulmonary vein anatomy in patients undergoing catheter ablation of atrial fibrillation. Circulation 107(15):2004–2010, 2003.CrossRefGoogle Scholar
  11. 11.
    Kilner, P. J., G.-Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–764, 2000.CrossRefGoogle Scholar
  12. 12.
    Kim, W., T. Bisgaard, S. Nielson, J. Poulsen, E. Pedersen, J. Hasenkam, and A. Yoganathan. Two-dimensional mitral flow velocity profiles in pig models using epicardial doppler echocardiography. J. Am. Coll. Cardiol. 24(2):532–545, 1994.CrossRefGoogle Scholar
  13. 13.
    Krittian, S., T. Schenkel, U. Janoske, and H. Oertel. Partitioned fluid-solid coupling for cardiovascular blood flow: validation study of pressure-driven fluid-domain deformation. Ann. Biomed. Eng. 38(8):2676–2689, 2010.CrossRefGoogle Scholar
  14. 14.
    Ku, D. N. Blood flow in arteries. Annu. Rev. Fluid Mech. 29:399–434, 1997.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Long, Q., R. Merrifield, G. Yang, P. J. Kilner, D. N. Firmin, and X. Y. Xu. The influence of inflow boundary conditions on intra left ventricle flow predictions. J. Biomech. Eng. ASME 125:922–927, 2003.Google Scholar
  16. 16.
    Lotz. J., C. Meier, A. Leppert, and M. Galanski. Cardiovascular flow measurement with phase-contrast mr imaging: basic facts and implementation. RadioGraphics 22(3):651–671, 2002.Google Scholar
  17. 17.
    Mansour, M., G. Holmvang, D. Sosnovik, R. Migrino, S. Abbara, J. Ruskin, and D. Keane. Assessment of pulmonary vein anatomic variability by magnetic resonance imaging: implications for catheter ablation techniques for atrial fibrillation. J. Cardiovasc. Electrophysiol. 15(4):387–393, 2004.CrossRefGoogle Scholar
  18. 18.
    Mihalef, V., R. Ionasec, Y. Wang, Y. Zheng, B. Georgescu, and D. Comaniciu. Patient-specific modeling of left heart anatomy, dynamics and hemodynamics from high resolution 4d ct. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, April 2010, pp. 504 –507.Google Scholar
  19. 19.
    Pedrizzetti, G., and F. Domenichini. Nature optimizes the swirling flow in the human left ventricle. Phys. Rev. Lett. 95:108101, September 2005.Google Scholar
  20. 20.
    Schenkel, T., M. Malve, M. Reik, M. Markl, B. Jung, and H. Oertel. MRI-based CFD analysis of flow in a human left ventricle: Methodology and application to a healthy heart. Ann. Biomed. Eng. 37(3):503–515, 2009.CrossRefGoogle Scholar
  21. 21.
    Schmidt, B., S. Ernst, F. Ouyang, K. J. Chun, T. Broemel, D. Bansch, K.-H. Kuck, and M. Antz. External and endoluminal analysis of left atrial anatomy and the pulmonary veins in three-dimensional reconstructions of magnetic resonance angiography: the full insight from inside. J. Cardiovasc. Electrophysiol. 17(9):957–964, 2006.CrossRefGoogle Scholar
  22. 22.
    Shibata, M., T. Yambe, Y. Kanke, and T. Hayase. Atrial vortex measurement by magnetic resonance imaging. In: 13th International Conference on Biomedical Engineering. Vol. 23 of IFMBE Proceedings, edited by C. T. Lim, J. C. H. Goh, R. Magjarevic. Berlin: Springer, 2009, pp. 2254–2257.Google Scholar
  23. 23.
    Spiegel, K., W. Schiller, T. Schmid, A. Welz, D. Liepsch, and H. Oertel. Numerical simulation of the left ventricle and atrium as reference for pathological hearts. In: Proceedings of the Fifth IASTED International Conference on Biomechanics, 20–22 August 2007, pp. 78–83.Google Scholar
  24. 24.
    Tanne, D., E. Bertrand, L. Kadem, P. Pibarot, and R. Rieu. Assessment of left heart and pulmonary circulation flow dynamics by a new pulsed mock circulatory system. Exp. Fluids 48:837–850, 2010.CrossRefGoogle Scholar
  25. 25.
    Tanne, D., E. Bertrand, P. Pibarot, and R. Rieu. Asymmetric flows in an anatomical-shaped left atrium by 2c-3d+t piv measurements. Comput. Methods Biomech. Biomed. Eng. 209–211, 2008.Google Scholar
  26. 26.
    Wittkampf, F. H., M. F. van Oosterhout, P. Loh, R. Derksen, E.-j. Vonken, P. J. Slootweg, and S. Y. Ho. Where to draw the mitral isthmus line in catheter ablation of atrial fibrillation: histological analysis. Eur. Heart J. 26(7):689–695, 2005.CrossRefGoogle Scholar
  27. 27.
    Zhang, L. T., and M. Gay. Characterizing left atrial appendage functions in sinus rhythm and atrial fibrillation using computational models. J. Biomech. 41(11):2515–2523, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Sigrid K. Dahl
    • 1
    • 2
  • Espen Thomassen
    • 1
  • Leif Rune Hellevik
    • 1
  • Bjørn Skallerud
    • 1
  1. 1.Division of Biomechanics, Department of Structural EngineeringThe Norwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Scientific ComputingSimula Research LaboratoryOsloNorway

Personalised recommendations