Advertisement

Cardiovascular Engineering and Technology

, Volume 3, Issue 2, pp 237–247 | Cite as

Targeted Delivery of VEGF after a Myocardial Infarction Reduces Collagen Deposition and Improves Cardiac Function

  • Jenna M. Rosano
  • Rabee Cheheltani
  • Bin Wang
  • Hardik Vora
  • Mohammad F. KianiEmail author
  • Deborah L. Crabbe
Article

Abstract

The development of adjunctive therapies which attenuate adverse remodeling and improve LV function post myocardial infarction (MI) is of significant clinical interest. Previously, we have shown that targeted delivery of therapeutic vascular endothelial growth factor (VEGF) to the infarct border zone significantly increases vascular perfusion and results in improvements in LV function. In this study, we tested the hypothesis that improvements in cardiac function observed with this novel targeted drug delivery system strongly correlate with reductions in collagen deposition in the scar tissue after an MI. Rats received anti-P-selectin conjugated immunoliposomes containing VEGF immediately post-MI. Over 4 weeks, evolutionary changes in LV geometry and function were correlated with collagen deposition and infarct size quantified by Gomori’s trichrome and picrosirius red staining. Targeted VEGF treated hearts showed a 37% decrease in collagen deposition in the anterior wall, as well as significant improvements in LV filling pressures. Multi-regression analysis showed that the extent of collagen deposition post MI can be predicted by a linear combination of normalized LV mass and ejection fraction. Targeted delivery of VEGF post-MI results in significant decreases in collagen deposition and adverse remodeling. Improvements in cardiac function in this model are related to degree of collagen deposition and extent of scar formation.

Keywords

Pro-angiogenic compounds Diastolic function Cardiac remodeling 

Notes

Acknowledgments

The human VEGF165A was generously provided by Genentech, Inc., San Francisco, CA.This work was supported by grants from the American Heart Association and the National Heart, Lung and Blood Institute including a minority Mentored Faculty Career Development Award, KO1 HL076570-05 (to Dr. Crabbe).Rabee Cheheltani is a Predoctoral Fellow of the American Heart Association.

Conflict of interest

The authors have no conflicts of interest to report.

References

  1. 1.
    Carrabba, N., G. Parodi, R. Valenti, A. Migliorini, and D. Antoniucci. Comparison of effects of primary coronary angioplasty on left ventricular remodeling and heart failure in patients = 70 years with acute myocardial infarction. Am. J. Cardiol. 2009. doi: 10.1016/j.amjcard.2009.05.035.
  2. 2.
    Cohn, J. N., R. Ferrari, and N. Sharpe, on behalf of an Int Forum Cardiac Remodeling. Cardiac remodeling-concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J. Am. Coll. Cardiol. 35:569–582, 2000. doi: 10.1016/S0735-1097(99)00630-0.
  3. 3.
    Ertl, G., and S. Frantz. Healing after myocardial infraction. Cardiovasc. Res. 2005. doi: 10.1016/j.cardiores.2005.01.011.
  4. 4.
    Feigenbaum, H., W. F. Armstrong, and T. Ryan. Evaluation of systolic and diastolic function of the left ventricle. In: Feigenbaum’s Echocardiography, 2004.Google Scholar
  5. 5.
    Francis, G. S., and W. H. W. Tang. Natural history of cardiac remodeling. In: Cardiac Remodeling: Mechanism and Treatment, edited by B. Greenberg, 2006.Google Scholar
  6. 6.
    Freedman, S. B., and J. M. Isner. Therapeutic angiogenesis for ischemic cardiovascular disease. J. Mol. Cell. Cardiol. 2001. doi: 10.1006/jmcc.2000.1329.
  7. 7.
    Ito, H. No-reflow phenomenon and prognosis in patients with acute myocardial infarction. Nat. Clin. Pract. Cardiovasc. Med. 2006. doi: 10.1038/ncpcardio0632.
  8. 8.
    Ito, H., T. Tomooka, N. Sakai, H. Yu, Y. Higashino, K. Fujii, T. Masuyama, A. Kitabatake, and T. Minamino. Lack of myocardial perfusion immediately after successful thrombolysis—a predictor of poor recovery of left-ventricular function in anterior myocardial-infarction. Circulation 85(5):1699–1705, 1992.Google Scholar
  9. 9.
    Jain, R. K., and L. L. Munn. Leaky vessels? Call Angl1!. Nat. Med. 6:131–132, 2000.CrossRefGoogle Scholar
  10. 10.
    Lloyd-Jones, D. Heart disease and stroke statistics-2010 update: a report from the American Heart Association (vol 121, pg e46, 2010). Circulation 2010. doi: 10.1161/CIR.0b013e3181d7cf32.
  11. 11.
    Markel, T. A., Y. Wang, J. L. Herrmann, P. R. Crisostomo, M. Wang, N. M. Novotny, C. M. Herring, J. Tan, T. Lahm, and D. R. Meldrum. VEGF is critical for stem cell-mediated cardioprotection and a crucial paracrine factor for defining the age threshold in adult and neonatal stem cell function. Am. J. Physiol.-Heart Circ. Physiol. 2008. doi: 10.1152/ajpheart.00565.2008.
  12. 12.
    Matsumoto, R., T. Omura, M. Yoshiyama, T. Hayashi, S. Inamoto, K. R. Koh, K. Ohta, Y. Izumi, Y. Nakamura, K. Akioka, Y. Kitaura, K. Takeuchi, and J. Yoshikawa. Vascular endothelial growth factor-expressing mesenchymal stem cell transplantation for the treatment of acute myocardial infarction. Arterioscl. Throm. Vasc. Biol. 2005. doi: 10.1161/01.ATV.0000165696.25680.ce.
  13. 13.
    Miura, T., and T. Miki. Limitation of myocardial infarct size in the clinical setting: current status and challenges in translating animal experiments into clinical therapy. Basic Res. Cardiol. 103:501–513, 2008. doi: 10.1007/s00395-008-0743-y.CrossRefGoogle Scholar
  14. 14.
    Muller, R., and P. Buttner. A critical discussion of intraclass correlation-coefficients. Stat. Med. 13:2465–2476, 1994.CrossRefGoogle Scholar
  15. 15.
    Pfeffer, J. M., T. A. Fischer, and M. A. Pfeffer. Angiotensin-converting enzyme-inhibition and ventricular and remodeling after myocardial-infarction. Annu. Rev. Physiol. 57:805–826, 1995. doi: 10.1146/annurev.ph.57.030195.004105.CrossRefGoogle Scholar
  16. 16.
    Prunier, F., R. Gaertner, L. Louedec, J. B. Michel, J. J. Mercadier, and B. Escoubet. Doppler echocardiographic estimation of left ventricular end-diastolic pressure after MI in rats. Am. J. Physiol.-Heart Circ. Physiol. 283:H346–H352, 2002. doi: 10.1152/ajpheart.01050.2001.Google Scholar
  17. 17.
    Quinones, M. A., A. D. Waggoner, L. A. Reduto, J. G. Nelson, J. B. Young, W. L. Winters, L. G. Ribeiro, and R. R. Miller. A new, simplified and accurate method for determining ejection fraction with two-dimensional echocardiography. Circulation 1981.Google Scholar
  18. 18.
    Ross, A. M. The effects of tissue-plasminogen activator, streptokinase, or both on coronary-artery patency, ventricular-function, and survival after acute myocardial-infarction (Vol 329, Pg 1615, 1993). N. Engl. J. Med. 1994.Google Scholar
  19. 19.
    Rudge, J. S., J. Holash, D. Hylton, M. Russell, S. Jiang, R. Leidich, N. Papadopoulos, E. A. Pyles, A. I. Torri, S. J. Wiegand, G. Thurston, N. Stahl, and G. D. Yancopoulos. VEGF Trap complex formation measures production rates of VEGF, providing a biomarker for predicting efficacious angiogenic blockade. Proc. Natl. Acad. Sci. USA 104:18363–18370, 2007. doi: 10.1073/pnas.0708865104.CrossRefGoogle Scholar
  20. 20.
    Scott, R. C., J. M. Rosano, Z. Ivanov, B. Wang, P. L. G. Chong, A. C. Issekutz, D. L. Crabbe, and M. F. Kiani. Targeting VEGF-encapsulated immunoliposomes to MI heart improves vascularity and cardiac function. FASEB J. 23:3361–3367, 2009. doi: 10.1096/fj.08-127373.CrossRefGoogle Scholar
  21. 21.
    Scott, R. C., B. Wang, R. Nallamothu, C. B. Pattillo, G. Perez-Liz, A. Issekutz, L. Del Valle, G. C. Wood, and M. F. Kiani. Targeted delivery of antibody conjugated liposomal drug carriers to rat myocardial infarction. Biotechnol. Bioeng. 96:795–802, 2007. doi: 10.1002/bit.21233.CrossRefGoogle Scholar
  22. 22.
    Scott, R. C., D. Crabbe, B. Krynska, R. Ansari, and M. F. Kiani. Aiming for the heart: targeted delivery of drugs to diseased cardiac tissue. Expert Opin. Drug Deliv. 5:459–470, 2008. doi: 10.1517/17425247.5.4.459.CrossRefGoogle Scholar
  23. 23.
    Scott, R. C. Targeting immunoliposomes containing pro-angiogenic compounds to the infarcted rat heart. 2008.Google Scholar
  24. 24.
    Walter, U. M., L. M. Ayer, B. A. Wolitzky, D. D. Wagner, R. O. Hynes, A. M. Manning, and A. C. Issekutz. Characterization of a novel adhesion function blocking monoclonal antibody to rat/mouse P-selectin generated in the P-selectin-deficient mouse. Hybridoma. 16:249–257, 1997.CrossRefGoogle Scholar
  25. 25.
    Whittaker, P., R. A. Kloner, D. R. Boughner, and J. G. Pickering. Quantitative assessment of myocardial collagen with picrosirius red staining and circularly-polarized light. Basic Res. Cardiol. 89:397–410, 1994.CrossRefGoogle Scholar
  26. 26.
    Yancopoulos, G. D., S. Davis, N. W. Gale, J. S. Rudge, S. J. Wiegand, and J. Holash. Vascular-specific growth factors and blood vessel formation. Nature 407:242–248, 2000. doi: 10.1038/35025215.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2012

Authors and Affiliations

  • Jenna M. Rosano
    • 1
  • Rabee Cheheltani
    • 1
  • Bin Wang
    • 1
  • Hardik Vora
    • 3
  • Mohammad F. Kiani
    • 1
    • 2
    Email author
  • Deborah L. Crabbe
    • 1
    • 3
  1. 1.Department of Mechanical EngineeringTemple UniversityPhiladelphiaUSA
  2. 2.Department of Radiation OncologyTemple University School of MedicinePhiladelphiaUSA
  3. 3.Cardiovascular Research CenterTemple University School of Medicine PhiladelphiaPhiladelphiaUSA

Personalised recommendations