A Clustering Method for Calculating Membrane Currents in Cardiac Electrical Models

  • Jagir R. Hussan
  • Peter J. Hunter
  • Mark L. Trew
Article

Abstract

Many studies into cardiac electrical rhythm and disturbances use computer modeling as a valuable tool for testing hypotheses. Computer modeling is often limited by tractability and the availability of computing resources. Some of these limitations can be overcome by efficient numerical schemes that solve the equations modeling cardiac electrical activation. This work presents a new numerical method, the piecewise phase space approximation (PPSA), for the time advancement of the coupled systems of ordinary differential equations (ODEs) that are used to describe cardiac cell membrane currents. Using novel metrics, data structures and approximations, state variables are discretely clustered in the phase space of the ODEs. Extreme points of each cluster are advanced through time by an appropriate solver and the remainder of the cluster points are reconstructed using a predictor function. This new method can contribute additional efficiency to many other established and emerging techniques for discretizing and solving cardiac electrical activation problems. The PPSA is assessed by a two-variable problem and a suite of one and two-dimensional cardiac electrical activation models of varying complexity. Less computational operations are required for comparable results with methods where all points are solved independently. Electrical activation in a detailed model of canine ventricles confirms these results. The performance of the PPSA will continue to improve with further investigation into alternative predictor functions, relaxation of phase space discretizations and parallelization of the algorithm.

Keywords

Cardiac activation Numerical solutions Phase space analysis Ordinary differential equations Reaction-diffusion systems 

References

  1. 1.
    Abarbanel, H. D. I., R. Brown, and M. B. Kennel. Local lyapunov exponents computed from observed data. J. Nonlinear Sci. 2:343–365, 1992.MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Austin, T. M., M. L. Trew, and A. J. Pullan. Solving the cardiac bidomain equations for discontinuous conductivities. IEEE Trans. Biomed. Eng. 53(7):1265–1272, 2006.CrossRefGoogle Scholar
  3. 3.
    Benner, P., V. Mehrmann, and D. C. Sorensen (eds.). Dimension Reduction of Large-Scale Systems, Vol. 45 of Lect. Notes Comp. Sci. Springer, 2003.Google Scholar
  4. 4.
    Bentley, J. L. K–d trees for semidynamic point sets. In: SCG ’90: Proceedings of the Sixth Annual Symposium on Computational Geometry. New York, NY: ACM, 1990, pp. 187–197.Google Scholar
  5. 5.
    Browne, S., J. Dongarra, N. Garner, G. Ho, and P. Mucci. Portable programming interface for performance evaluation on modern processors. Int. J. High Perf. Comp. Appl. 14(3):189–204, 2000.CrossRefGoogle Scholar
  6. 6.
    Caldwell, B. J., M. L. Trew, G. B. Sands, D. A. Hooks, I. J. LeGrice, and B. H. Smaill. Three distinct directions of intramural activation reveal non uniform side to side electrical coupling of ventricular myocytes. Circ. Arrhythm. Electrophysiol. 2:433–440, 2009.CrossRefGoogle Scholar
  7. 7.
    Cherry, E. M., H. S. Greenside, and C. S. Henriquez. A space-time adaptive method for simulating complex cardiac dynamics. Phys. Rev. Lett. 84(6):1343–1344, 2000.CrossRefGoogle Scholar
  8. 8.
    Clayton, R. H., O. Bernus, E. M. Cherry, H. Dierckx, F. H. Fenton, L. Mirabella, A. V. Panfilov, F. B. Sachse, G. Seemann, and H. Zhang. Models of cardiac tissue electrophysiology: progress, challenges and open questions. Prog. Biophys. Mol. Biol. 104(1–3):22–48, 2011.CrossRefGoogle Scholar
  9. 9.
    Clayton, R. H., and A. V. Panfilov. A guide to modelling cardiac electrical activity in anatomically detailed ventricles. Prog. Biophys. Mol. Biol. 96(1–3):19–43, 2008.CrossRefGoogle Scholar
  10. 10.
    Cohen, S. D., and A. C. Hindmarsh. CVODE, a stiff/nonstiff ODE solver in C. Comput. Phys. 10(2):138–143, 1996.Google Scholar
  11. 11.
    Colli Franzone, P., P. Deuflhard, B. Erdmann, J. Lang, and L. F. Pavarino. Adaptivity in space and time for reaction-diffusion systems in electrocardiology. SIAM J. Sci. Comput. 28(3):942–962, 2006.MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Dieci, L. Jacobian free computation of Lyapunov exponents. J. Dyn. Differ. Equ. 14:697–717, 2002.MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Eckmann, J. P., and D. Ruelle. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3):617–656, 1985MathSciNetCrossRefGoogle Scholar
  14. 14.
    Faber, G. M., and Y. Rudy. Action potential and contractility changes in [Na+]i overloaded cardiac myocytes: a simulation study. Biophys. J. 78:2392–2404, 2000.CrossRefGoogle Scholar
  15. 15.
    Farmer, J. D., and J. J. Sidorowich. Predicting chaotic time series. Phys. Rev. Lett. 59(8):845–848, 1987.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Galias, Z. Local transversal Lyapunov exponents for analysis of synchronization of chaotic systems. Int. J. Circ. Theor. Appl. 27(6):589–604, 1999.MATHCrossRefGoogle Scholar
  17. 17.
    Gameiro, M., K. Mischaikow, and W. Kalies. Topological characterization of spatial-temporal chaos. Phys. Rev. E. 70:035203(R), 2004.Google Scholar
  18. 18.
    Guégan, D., and J. Leroux. Forecasting chaotic systems: the role of local Lyapunov exponents. Chaos Soliton. Fract. 41(5):2401–2404, 2009.CrossRefGoogle Scholar
  19. 19.
    Haber, R., and L. Keviczky. Nonlinear System Identification: Input–Output Modeling Approach. Kluwer Academic Publishers, 1999.Google Scholar
  20. 20.
    Hoare, C. A. R. Quicksort. Comput. J. 5(1):10–16, 1962.MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    James, C. K., and G. David. Rate-controlled partial-equilibrium method for treating reacting gas mixtures. Combust. Flame 17:237–241, 1971.CrossRefGoogle Scholar
  22. 22.
    Kirk, B. S., J. W. Peterson, R. H. Stogner, and G. F. Carey. libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4):237–254, 2006.CrossRefGoogle Scholar
  23. 23.
    Knuth, D. The Art of Computer Programming, Chapter 3: Sorting and Searching (2nd ed.). Addison-Wesley, pp. 513–558, 1998.Google Scholar
  24. 24.
    Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11(2):431–441, 1963.MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Martin, D. H. Prediction sensitivity to functional perturbations in modelling with ordinary differential equations. Appl. Math. Opt. 6:123–137, 1980.MATHCrossRefGoogle Scholar
  26. 26.
    Mirabella, L., F. Nobile, and A. Veneziani. An a posteriori error estimator for model adaptivity in electrocardiology. Comput. Method Appl. Mech. 200:2727–2737, 2011.MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    Morrison, D. R. PATRICIA-practical algorithm to retrieve information coded in alphanumeric. J. ACM 15(4):514–534, 1968.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Padberg, K. Numerical Analysis of Transport in Dynamical Systems. Ph.D. thesis, Universität Paderborn, 2005. http://ubdok.uni-paderborn.de/servlets/DocumentServlet?id=523.
  29. 29.
    Peyrat, J.-M., M. Sermesant, X. Pennec, H. Delingette, C. Xui, E. R. McVeigh, and N. Ayache. A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. IEEE Trans. Med. Imaging 26(11):1500–1514, 2007.CrossRefGoogle Scholar
  30. 30.
    Plank, G., R. A. Burton, P. Hales, M. Bishop, T. Mansoori, M. O. Bernabeu, A. Garny, A. J. Prassl, C. Bollensdorff, F. Mason, F. Mahmood, B. Rodriguez, V. Grau, J. E. Schneider, D. Gavaghan, and P. Kohl. Generation of histo-anatomically representative models of the individual heart: tools and application. Philos. Trans. R. Soc. A 367:2257–2292, 2009.MATHCrossRefGoogle Scholar
  31. 31.
    Ren, Z., and S. B. Pope. The use of slow manifolds in reactive flows. Combust. Flame 147:243–261, 2006.CrossRefGoogle Scholar
  32. 32.
    Rogers, J. M., and A. D. McCulloch. A collocation-galerkin finite element model of cardiac action potential propagation. IEEE Trans. Biomed. Eng. 41(8):743–757, 1994.CrossRefGoogle Scholar
  33. 33.
    Rush, S., and H. Larsen. A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. 25(4):389–392, 1978.CrossRefGoogle Scholar
  34. 34.
    Strang, G. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3):506–517, 1968.MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    ten Tusscher, K. H. W. J., D. Noble, P. J. Noble, and A. V. Panfilov. A model for human ventricular tissue. Am. J. Physiol. Heart C 286(4):H1573–H1589, 2004.CrossRefGoogle Scholar
  36. 36.
    Whiteley, J. P. An efficient technique for the numerical solution of the bidomain equations. Ann. Biomed. Eng. 36:1398–1408, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Jagir R. Hussan
    • 1
  • Peter J. Hunter
    • 1
  • Mark L. Trew
    • 1
  1. 1.Auckland Bioengineering Institute, University of AucklandAucklandNew Zealand

Personalised recommendations