Cardiovascular Engineering and Technology

, Volume 2, Issue 4, pp 253–262 | Cite as

In Vitro and In Vivo Performance Evaluation of the Second Developmental Version of the PediaFlow Pediatric Ventricular Assist Device

  • Timothy M. Maul
  • Ergin Kocyildirim
  • Carl A. JohnsonJr.
  • Amanda R. Daly
  • Salim E. Olia
  • Joshua R. Woolley
  • Shaun Snyder
  • Shawn G. Bengston
  • Marina V. Kameneva
  • James F. Antaki
  • William R. Wagner
  • Harvey S. Borovetz
  • Peter D. Wearden
  • The PediaFlow Consortium
Article

Abstract

Ventricular assist devices (VADs) have significantly impacted the treatment of adult cardiac failure, but few options exist for pediatric patients. This has motivated our group to develop an implantable magnetically levitated rotodynamic VAD (PediaFlow®) for 3–20 kg patients. The second prototype design of the PediaFlow (PF2) is 56% smaller than earlier prototypes, and achieves 0.5–1.5 L/min blood flow rates. In vitro hemodynamic performance and hemolysis testing were performed with analog blood and whole ovine blood, respectively. In vivo evaluation was performed in an ovine model to evaluate hemocompatibility and end-organ function. The in vitro normalized index of hemolysis was 0.05–0.14 g/L over the specified operating range. In vivo performance was satisfactory for two of the three implanted animals. A mechanical defect caused early termination at 17 days of the first in vivo study, but two subsequent implants proceeded without complication and electively terminated at 30 and 70 days. Serum chemistries and plasma free hemoglobin were within normal limits. Gross necropsy revealed small, subclinical infarctions in the kidneys of the 30 and 70 day animals (confirmed by histopathology). The results of these experiments, particularly the biocompatibility demonstrated in vivo encourage further development of a miniature magnetically levitated VAD for the pediatric population. Ongoing work including further reduction of size will lead to a design freeze in preparation for of clinical trials.

Keywords

Pediatric Mechanical circulatory support Ventricular assist device Pre-clinical study In vivo 

Notes

Acknowledgments

Support was provided by NIH (HHSN268200448192C, R41-HL077028, R01-HL089456-01A2), NSF (ECS-0300097), Commonwealth of Pennsylvania, UNCF MERCK Graduate Fellowship (Johnson), Cardiovascular Bioengineering T32 Training Program (Woolley), and The Hartwell Foundation (Maul).

Conflict of interest

Technical expertise and intellectual property were provided by LaunchPoint Technologies, LLC and WorldHeart Corporation. Funding for their participation was provided through the NIH funding (HHSN268200448192C). The authors had full control of the design of the study, methods used, outcome parameters, analysis of data, and production of this manuscript.

References

  1. 1.
    Antaki, J. F., M. R. Ricci, J. E. Verkaik, S. T. Snyder, T. M. Maul, J. Kim, et al. PediaFlow maglev ventricular assist device: a prescriptive design approach. Cardiovasc Eng 1(1):104–121, 2010.CrossRefGoogle Scholar
  2. 2.
    Drummond, A., and J. Antaki. Virtual fit study of pediatric heart assist system. In: Digital Human Modeling: Trends in Human Algorithms, edited by Y. Cai. Berlin: Springer, 2008, pp. 71–79.Google Scholar
  3. 3.
    Gbadegesin, R., S. Zhao, J. Charpie, P. Brophy, W. Smoyer, and J–. J. Lin. Significance of hemolysis on extracorporeal life support after cardiac surgery in children. Pediatr Nephrol 24(3):589–595, 2009. doi:10.1007/s00467-008-1047-z.CrossRefGoogle Scholar
  4. 4.
    Gibber, M., Z. J. Wu, W. B. Chang, G. Bianchi, J. Hu, J. Garcia, et al. In vivo experience of the child-size pediatric Jarvik 2000 heart: update. ASAIO J 56(4):369–376, 2010. doi:10.1097/MAT.0b013e3181dbe55e.Google Scholar
  5. 5.
    Heilmann, C., U. Geisen, C. Benk, M. Berchtold-Herz, G. Trummer, C. Schlensak, et al. Haemolysis in patients with ventricular assist devices: major differences between systems. Eur J Cardiothorac Surg 36(3):580–584, 2009. doi:10.1016/j.ejcts.2009.04.015.CrossRefGoogle Scholar
  6. 6.
    Johnson, Jr., C. A., S. Vandenberghe, A. R. Daly, J. R. Woolley, S. T. Snyder, J. E. Verkaik, et al. Biocompatibility assessment of the first generation PediaFlow pediatric ventricular assist device. Artif Organs 35(1):9–21, 2011.CrossRefGoogle Scholar
  7. 7.
    Kameneva, M. V., M. J. Watach, P. Litwak, J. F. Antaki, K. C. Butler, D. C. Thomas, et al. Chronic animal health assessment during axial ventricular assistance: importance of hemorheologic parameters. ASAIO J 45(3):183–188, 1999.CrossRefGoogle Scholar
  8. 8.
    Kilic, A., T. D. Nolan, T. Li, G. K. Yankey, D. J. Prastein, G. Cheng, et al. Early in vivo experience with the pediatric Jarvik 2000 heart. ASAIO J 53(3):374–378, 2007.CrossRefGoogle Scholar
  9. 9.
    Lawson, D. S., R. Ing, I. M. Cheifetz, R. Walczak, D. Craig, S. Schulman, et al. Hemolytic characteristics of three commercially available centrifugal blood pumps. Pediatr Crit Care Med 6(5):573–577, 2005.CrossRefGoogle Scholar
  10. 10.
    Litwak, K. N., L. S. Unger, K. Fukamachi, and D. Saeed. Retrospective analysis of adverse events in preclinical ventricular assist device experiments. ASAIO J 54(4):347–350, 2008.CrossRefGoogle Scholar
  11. 11.
    Maul, T. M., E. Kocyildirim, J. D. Marks, S. G. Bengston, S. E. Olia, P. M. Callahan et al. Pre-clinical implants of the levitronix PediVAS® pediatric ventricular assist device: strategy for regulatory approval. Cardiovasc. Eng. Tech. 2011. doi:10.1007/s13239-011-0063-5.
  12. 12.
    Maul TM, Wearden PD, Winowich S, Wagner WR, Borovetz HS, editors. Clinical Challenges in Pediatric Cardiovascular Support: Children are not Miniature Adults. International Conference on Mechanics and Medicine in Biology; 2008 June; Pittsburgh, PA.Google Scholar
  13. 13.
    Morales, D. L., W. J. Dreyer, S. W. Denfield, J. S. Heinle, E. D. McKenzie, D. E. Graves, et al. Over two decades of pediatric heart transplantation: how has survival changed? J. Thorac. Cardiovasc. Surg. 133(3):632–639, 2007.CrossRefGoogle Scholar
  14. 14.
    Naito, K., K. Mizuguchi, and Y. Nose. The need for standardizing the index of hemolysis. Artif Organs 18(1):7–10, 1994.CrossRefGoogle Scholar
  15. 15.
    Noh, M. D., J. F. Antaki, M. Ricci, J. Gardiner, D. Paden, J. Wu, et al. Magnetic design for the PediaFlow ventricular assist device. Artif Organs 32(2):127–135, 2008.CrossRefGoogle Scholar
  16. 16.
    Rose, E. A., A. C. Gelijns, A. J. Moskowitz, D. F. Heitjan, L. W. Stevenson, W. Dembitsky, et al. Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med 345(20):1435–1443, 2001.CrossRefGoogle Scholar
  17. 17.
    Rother, R. P., L. Bell, P. Hillmen, and M. T. Gladwin. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin. JAMA: The Journal of the American Medical Association 293(13):1653–1662, 2005. doi:10.1001/jama.293.13.1653.CrossRefGoogle Scholar
  18. 18.
    Tuzun, E., K. Harms, D. Liu, K. A. Dasse, J. L. Conger, J. S. Richardson, et al. Preclinical testing of the levitronix ultramag pediatric cardiac assist device in a lamb model. ASAIO J 53(3):392–396, 2007.CrossRefGoogle Scholar
  19. 19.
    Uber, B. E., S. A. Webber, V. O. Morell, and J. F. Antaki. Hemodynamic guidelines for design and control of a turbodynamic pediatric ventricular assist device. ASAIO J 52(4):471–478, 2006.CrossRefGoogle Scholar
  20. 20.
    Untaroiu, A., A. L. Throckmorton, S. M. Patel, H. G. Wood, P. E. Allair, and D. B. Olsen. Numerical and experimental analysis of an axial flow left ventricular assist device: the influence of the diffuser on overall pump performance. Artif Organs 29(7):581–591, 2005.CrossRefGoogle Scholar
  21. 21.
    Vandenberghe, S., P. Segers, B. Meyns, and P. Verdonck. Hydrodynamic characterisation of ventricular assist devices. Int J Artif Organs 24(7):470–477, 2001.Google Scholar
  22. 22.
    Webber, S. Pediatric circulatory support contractors’ meeting: report of the clinical trials working group. ASAIO J 55(1):10–12, 2009.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Wintrobe, M. M. Clinical Hematology (6th ed.). Philadelphia: Lea and Febiger, pp. 427–433, 1967.Google Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Timothy M. Maul
    • 1
    • 2
    • 3
  • Ergin Kocyildirim
    • 2
  • Carl A. JohnsonJr.
    • 1
    • 2
  • Amanda R. Daly
    • 1
    • 2
  • Salim E. Olia
    • 1
    • 2
  • Joshua R. Woolley
    • 1
    • 2
  • Shaun Snyder
    • 5
  • Shawn G. Bengston
    • 2
  • Marina V. Kameneva
    • 1
    • 2
  • James F. Antaki
    • 2
    • 4
  • William R. Wagner
    • 1
    • 2
  • Harvey S. Borovetz
    • 1
    • 2
  • Peter D. Wearden
    • 2
    • 3
    • 7
  • The PediaFlow Consortium
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
  1. 1.Department of BioengineeringUniversity of PittsburghPittsburghUSA
  2. 2.McGowan Institute for Regenerative Medicine, University of PittsburghPittsburghUSA
  3. 3.Department of Cardiothoracic SurgeryChildren’s Hospital of Pittsburgh of UPMCPittsburghUSA
  4. 4.Department of BioengineeringCarnegie Mellon UniversityPittsburghUSA
  5. 5.LaunchPoint Technologies, Inc.GoletaUSA
  6. 6.WorldHeart CorporationSalt Lake CityUSA
  7. 7.Children’s Hospital of PittsburghPittsburghUSA

Personalised recommendations