Cardiovascular Engineering and Technology

, Volume 2, Issue 2, pp 101–112 | Cite as

Implantation of a Tissue-engineered Heart Valve from Human Fibroblasts Exhibiting Short Term Function in the Sheep Pulmonary Artery

  • Zeeshan H. Syedain
  • Matthew T. Lahti
  • Sandra L. Johnson
  • Paul S. Robinson
  • George R. Ruth
  • Richard W. Bianco
  • Robert T. Tranquillo
Article

Abstract

We have previously demonstrated the feasibility of fabricating a fibrin-based tissue-engineered heart valve (TEHV) using neonatal human dermal fibroblasts (nhDF), including leaflets with structural and mechanical anisotropy similar to native leaflets. The aim here was to evaluate the performance of this TEHV in a pilot study using the sheep model. Bi-leaflet TEHV were conditioned in a cyclic stretching bioreactor, then implanted within a polymeric sleeve interpositionally into the pulmonary artery of four sheep, with the pulmonary valve either left intact or rendered incompetent. Heparin and immunosuppression were administered for the duration. Echocardiography was performed at implantation and at 4 and 8 weeks. Explants were examined histologically, biochemically, and mechanically. In all sheep, echocardiography at implantation showed coapting leaflets, with minimal valve regurgitation and no turbulence. Orifice area and pressure gradients at systole approached the native pulmonary valve values. Echocardiography at 4 weeks revealed both leaflets functional with moderate regurgitation and turbulence in three sheep; in one sheep, only one leaflet was evident. Explanted leaflets had thickness and tensile properties comparable to the implanted leaflets. There was extensive endothelialization of the root lumenal surface. In the two sheep continued to 8 weeks, only one shortened leaflet remained in both cases. Immunocytochemistry indicated this was due to sustained tissue contraction caused by the nhDF and not by the invading host cells, which included a subpopulation consistent with bone marrow-derived cells. Short-term success was thus achieved in terms of excellent valve function at implantation and some valve function for at least 4 weeks; however, an apparent progressive tissue contraction needs to be resolved for long-term success.

Keywords

Tissue-engineering Heart valve Fibrin Fibroblast Ovine 

Notes

Acknowledgments

The authors acknowledge Naomi Ferguson, Cary Valley, Stephen Stephens, Ricky Chow, and Linisia Wahyudi for technical assistance. Funding was provided by the National Institutes of Health (USA) BRP HL71538 to R.T.T.

Conflict of interest

The authors have no conflicts of interest with the reported study to disclose.

Supplementary material

Supplementary material 1 (AVI 5282 kb)

Supplementary material 2 (AVI 9170 kb)

Supplementary material 3 (AVI 4253 kb)

Supplementary material 4 (AVI 1835 kb)

References

  1. 1.
    Allen, H. D., D. J. Driscoll, R. E. Shaddy, and T. F. Feltes. Moss and Adams’ Heart Disease in Infants, Children, and Adolescents. Philadelphia: Lippincott Williams & Wilkins, 2008.Google Scholar
  2. 2.
    Flanagan, T. C., J. S. Sachweh, J. Frese, H. Schnoring, N. Gronloh, S. Koch, et al. In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng. 15:2965–2976, 2009.CrossRefGoogle Scholar
  3. 3.
    Gallegos, R. P., P. J. Nockel, A. L. Rivard, and R. W. Bianco. The current state of in vivo pre-clinical animal models for heart valve evaluation. J. Heart Valve Dis. 14:423–432, 2005.Google Scholar
  4. 4.
    Gong, X. J., X. Q. Zhang, Y. Song, Y. H. Li, X. Y. Pang, and S. X. Li. Effects of immunosuppressive treatment in prevention of calcification in aortic valved homograft: experiment with rats. Zhonghua yi xue za zhi 87:2132–2135, 2007.Google Scholar
  5. 5.
    Gottlieb, D., T. Kunal, S. Emani, E. Aikawa, D. W. Brown, A. J. Powell, et al. In vivo monitoring of function of autologous engineered pulmonary valve. J. Thorac. Cardiovas. Surg. 139:723–731, 2010.Google Scholar
  6. 6.
    Grassl, E. D., T. R. Oegema, and R. T. Tranquillo. Fibrin as an alternative biopolymer to type I collagen for fabrication of a media-equivalent. J. Biomed. Mater. Res. 60:607–612, 2002.CrossRefGoogle Scholar
  7. 7.
    Grinnell, F., and C. H. Ho. Transforming growth factor beta stimulates fibroblast-collagen matrix contraction by different mechanisms in mechanically loaded and unloaded matrices. Exp. Cell Res. 273:248–255, 2002.CrossRefGoogle Scholar
  8. 8.
    Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, et al. Functional living trileaflet heart valves grown in vitro. Circulation 102:III44–III49, 2000.Google Scholar
  9. 9.
    Jockenhoevel, S., K. Chalabi, J. S. Sachweh, H. V. Groesdonk, L. Demircan, M. Grossmann, et al. Tissue engineering: complete autologous valve conduit—a new moulding technique. Thorac. Cardiovasc. Surg. 49:287–290, 2001.CrossRefGoogle Scholar
  10. 10.
    Kim, B. S., and D. J. Mooney. Engineering smooth muscle tissue with a predefined structure. J. Biomed. Mater. Res. 41:322–332, 1998.CrossRefGoogle Scholar
  11. 11.
    L’Heureux, N., N. Dusserre, G. Konig, B. Victor, P. Keire, T. N. Wight, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat. Med. 12:361–365, 2006.CrossRefGoogle Scholar
  12. 12.
    L’Heureux, N., T. N. McAllister, and L. M. de la Fuente. Tissue-engineered blood vessel for adult arterial revascularization. N. Engl. J. Med. 357:1451–1453, 2007.CrossRefGoogle Scholar
  13. 13.
    Long, J. L., and R. T. Tranquillo. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 22:339–350, 2003.CrossRefGoogle Scholar
  14. 14.
    McAllister, T. N., M. Maruszewski, S. A. Garrido, W. Wystrychowski, N. Dusserre, A. Marini, et al. Effectiveness of haemodialysis access with an autologous tissue-engineered vascular graft: a multicentre cohort study. Lancet 373:1440–1446, 2009.CrossRefGoogle Scholar
  15. 15.
    Mol, A., M. C. Rutten, N. J. Driessen, C. V. Bouten, G. Zund, F. P. Baaijens, et al. Autologous human tissue-engineered heart valves: prospects for systemic application. Circulation 114:I152–I158, 2006.CrossRefGoogle Scholar
  16. 16.
    Mrugala, D., C. Bony, N. Neves, L. Caillot, S. Fabre, D. Moukoko, et al. Phenotypic and functional characterisation of ovine mesenchymal stem cells: application to a cartilage defect model. Ann. Rheum. Dis. 67:288–295, 2008.CrossRefGoogle Scholar
  17. 17.
    Robinson, P. S., and R. T. Tranquillo. Planar biaxial behavior of fibrin-based tissue-engineered heart valve leaflets. Tissue Eng. 15:2763–2772, 2009.CrossRefGoogle Scholar
  18. 18.
    Robinson, P. S., S. L. Johnson, M. C. Evans, V. H. Barocas, and R. T. Tranquillo. Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng. Part A 14:83–95, 2008.CrossRefGoogle Scholar
  19. 19.
    Rosamond, W., K. Flegal, K. Furie, A. Go, K. Greenlund, N. Haase, et al. Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 117:e25–e146, 2008.CrossRefGoogle Scholar
  20. 20.
    Sabet, H. Y., W. D. Edwards, H. D. Tazelaar, and R. C. Daly. Congenitally bicuspid aortic valves: a surgical pathology study of 542 cases (1991 through 1996) and a literature review of 2,715 additional cases. Mayo Clin. Proc. 74:14–26, 1999.CrossRefGoogle Scholar
  21. 21.
    Schmidt, D., P. E. Dijkman, A. Driessen-Mol, R. Stenger, C. Mariani, A. Puolakka, et al. Minimally-invasive implantation of living tissue engineered heart valves: a comprehensive approach from autologous vascular cells to stem cells. J. Am. Coll. Cardiol. 56:510–520, 2010.Google Scholar
  22. 22.
    Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. Daebritz, D. P. Martin, A. M. Moran, et al. Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102:III22–III29, 2000.Google Scholar
  23. 23.
    Sodian, R., S. P. Hoerstrup, J. S. Sperling, S. H. Daebritz, D. P. Martin, F. J. Schoen, et al. Tissue engineering of heart valves: in vitro experiences. Ann. Thorac. Surg. 70:140–144, 2000.CrossRefGoogle Scholar
  24. 24.
    Stegemann, H., and K. Stalder. Determination of hydroxyproline. Clin. Chim. Acta Int. J. Clin. Chem. 18:267–273, 1967.CrossRefGoogle Scholar
  25. 25.
    Sung, H. J., C. Meredith, C. Johnson, and Z. S. Galis. The effect of scaffold degradation rate on three-dimensional cell growth and angiogenesis. Biomaterials 25:5735–5742, 2004.CrossRefGoogle Scholar
  26. 26.
    Sutherland, F. W., T. E. Perry, Y. Yu, M. C. Sherwood, E. Rabkin, Y. Masuda, et al. From stem cells to viable autologous semilunar heart valve. Circulation 111:2783–2791, 2005.CrossRefGoogle Scholar
  27. 27.
    Syedain, Z. H., and R. T. Tranquillo. Controlled cyclic stretch bioreactor for tissue-engineered heart valves. Biomaterials 30:4078–4084, 2009.CrossRefGoogle Scholar
  28. 28.
    Syedain, Z. H., J. S. Weinberg, and R. T. Tranquillo. Cyclic distension of fibrin-based tissue constructs: evidence of adaptation during growth of engineered connective tissue. Proc. Natl Acad. Sci. U.S.A. 105:6537–6542, 2008.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  • Zeeshan H. Syedain
    • 1
  • Matthew T. Lahti
    • 2
  • Sandra L. Johnson
    • 4
  • Paul S. Robinson
    • 4
  • George R. Ruth
    • 2
  • Richard W. Bianco
    • 2
    • 3
  • Robert T. Tranquillo
    • 1
    • 4
  1. 1.Department of Chemical Engineering & Materials ScienceUniversity of MinnesotaMinneapolisUSA
  2. 2.Experimental Surgical ServicesUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of SurgeryUniversity of MinnesotaMinneapolisUSA
  4. 4.Department of Biomedical EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations