Cardiovascular Engineering and Technology

, Volume 2, Issue 3, pp 186–195 | Cite as

Fluid Simulation of a Transcatheter Aortic Valve Deployment into a Patient-Specific Aortic Root



Successful transcatheter aortic valve (TAV) deployment and function are heavily reliant on the implant-host tissue interaction. Many adverse events observed clinically in TAV procedures such as impairment of coronary artery flow, paravalvular leak, and access site injury could be attributed to improper TAV deployment and interaction with the aortic root. In this study, we performed a computational analysis of the TAV-aortic root interaction, particularly the hemodynamics before and after TAV deployment. Utilizing a recently developed computational TAV model, we simulated the deployment of this TAV into a 68 year old male patient. The geometry of the patient’s aortic valve and root were extracted from clinical CT images. From the simulation results, we obtained a peak transvalvular pressure drop of 78.45 and 25.27 mmHg before and after the TAV deployment, respectively. The mean systolic ejection transvalvular pressure reduced from 45.8 to 7.55 mmHg and effective orifice area (EOA) increased from 0.53 to 1.595 cm2 following the TAV intervention. The altered flow pattern following TAV intervention resulted in a significant pressure drop in the vicinity of the sinuses of Valsalva, and a corresponding decrease in percentage of cardiac output reaching the coronary arteries from 5.14 to 4.07% from pre- to post-TAV deployment. In conclusion, the developed computational models allow for a quantitative analysis of the hemodynamics before and after TAV intervention, and thus could be an enabling tool for patient screening and TAV design improvement.


Finite element analysis Computational fluid dynamics Transcatheter percutaneous aortic valve Patient-specific modeling 



We would like to thank Charles Primiano, M.D. and Raymond McKay, M.D. of Hartford Hospital in Hartford, CT for providing the CT scans used for geometry reconstruction, as well as Thuy Pham and Caitlin Martin for providing the human aortic tissue biaxial testing data. Research for this project was funded in part by the State of Connecticut Department of Public Health biomedical research grant DPH #2010-0085 and a NSF GRFP Pre-doctoral Fellowship.


  1. 1.
    Aguado-Sierra, J., N. Hadjilizou, J. E. Davies, D. Francis, J. Mayet, K. H. Parker. Pressure reservoir-wave separation applied to the coronary arterial data. In: Conference Proceedings of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 2693–2696.Google Scholar
  2. 2.
    Azadani, A., N. Jaussaud, P. Matthews, L. Ge, T. Chuter, and E. Tseng. Energy loss due to paravalvular leak with transcatheter aortic valve implantation. Ann. Thorac. Surg. 88(6):1857–1863, 2009.CrossRefGoogle Scholar
  3. 3.
    Azadani, A., N. Jaussaud, P. Matthews, L. Ge, T. Chuter, and E. Tseng. Transcatheter aortic valves inadequately relieve stenosis in small degenerated bioprostheses. Interact. Cardiovasc. Thorac. Surg. 11(1):70–77, 2010.CrossRefGoogle Scholar
  4. 4.
    Bauer, F., H. Eltchaninoff, C. Tron, P. Lesault, C. Agatiello, D. Nercolini, G. Derumeaux, and A. Cribier. Acute improvement in global and regional left ventricular systolic function after percutaneous heart valve implantation in patients with symptomatic aortic stenosis. Circulation 110(11):1473–1476, 2004.CrossRefGoogle Scholar
  5. 5.
    Ben-Dor, I., S. Goldstein, R. Waksman, L. Satler, Y. Li, A. Syed, G. Maluenda, S. Collins, W. Suddath, R. Torguson, Z. Xue, K. Kaneshige, P. Okubagzi, Z. Wang, K. Kent, and A. Pichard. Effects of percutaneous aortic valve replacement on coronary blood flow assessed with transesophageal Doppler echocardiography in patients with severe aortic stenosis. Am. J. Cardiol. 104(6):850–855, 2009.CrossRefGoogle Scholar
  6. 6.
    Berry, C., A. Asgar, Y. Lamarche, B. Marcheix, P. Couture, A. Basmadjian, A. Ducharme, J. Laborde, R. Cartier, and R. Bonan. Novel therapeutic aspects of percutaneous aortic valve replacement with the 21F CoreValve Revalving System. Catheter Cardiovasc Interv. 70(4):610–616, 2007.CrossRefGoogle Scholar
  7. 7.
    Bonow, R. O., B. A. Carabello, K. Chatterjee, A. C. de Leon Jr., D. P. Faxon, M. D. Freed, W. H. Gaasch, B. W. Lytle, R. A. Nishimura, P. T. O’Gara, R. A. O’Rourke, C. M. Otto, P. M. Shah, and J. S. Shanewise. 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular. Circulation 118(15), 2008.Google Scholar
  8. 8.
    Clavel, M., J. Webb, P. Pibarot, L. Altwegg, E. Dumont, C. Thompson, R. De Larochellière, D. Doyle, J. Masson, S. Bergeron, O. Bertrand, and J. Rodés-Cabau. Comparison of the hemodynamic performance of percutaneous and surgical bioprostheses for the treatment of severe aortic stenosis. J. Am. Coll. Cardiol. 53(20):1892–1893, 2009.CrossRefGoogle Scholar
  9. 9.
    Culliford, A. T., A. C. Galloway, S. B. Colvin, E. A. Grossi, F. G. Baumann, R. Esposito, G. H. Ribakove, and F. C. Spencer. Aortic valve replacement for aortic stenosis in persons aged 80 years and over. Am. J. Cardiol. 67(15):1256–1260, 1991.CrossRefGoogle Scholar
  10. 10.
    Dwyer, H., P. Matthews, A. Azadani, L. Ge, T. Guy, and E. Tseng. Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency. J. Thorac. Cardiovasc. Surg. 138(5):1227–1233, 2009.CrossRefGoogle Scholar
  11. 11.
    Dwyer, H., P. Matthews, A. Azadani, N. Jaussaud, L. Ge, T. Guy, and E. Tseng. Computational fluid dynamics simulation of transcatheter aortic valve degeneration. Interact. Cardiovasc. Thorac. Surg. 9(2):301–308, 2009.CrossRefGoogle Scholar
  12. 12.
    Frank, O. Die grundform des arteriellen pulses. Z. Biol. 37:483–526, 1899.Google Scholar
  13. 13.
    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer Verlag, 1993.Google Scholar
  14. 14.
    Gorlin, R., and S. Gorlin. Hydraulic formula for calculation of the area of the stenotic mitral valve, other cardiac valves, and central circulatory shunts. I. Am. Heart J. 41(1):1–29, 1951.CrossRefGoogle Scholar
  15. 15.
    Grube, E., J. C. Laborde, U. Gerckens, T. Felderhoff, B. Sauren, L. Buellesfeld, R. Mueller, M. Menichelli, T. Schmidt, B. Zickmann, S. Iversen, and G. W. Stone. Percutaneous implantation of the CoreValve self-expanding valve prosthesis in high-risk patients with aortic valve disease: the Siegburg first-in-man study. Circulation. 114(15):1616–1624, 2006.CrossRefGoogle Scholar
  16. 16.
    Grube, E., G. Schuler, L. Buellesfeld, U. Gerckens, A. Linke, P. Wenaweser, B. Sauren, F. Mohr, T. Walther, B. Zickmann, S. Iversen, T. Felderhoff, R. Cartier, and R. Bonan. Percutaneous aortic valve replacement for severe aortic stenosis in high-risk patients using the second- and current third-generation self-expanding CoreValve prosthesis: device success and 30-day clinical outcome. J. Am. Coll. Cardiol. 1(50):69–76, 2007.CrossRefGoogle Scholar
  17. 17.
    Gurvitch, R., D. Wood, E. Tay, J. Leipsic, J. Ye, S. Lichtenstein, C. Thompson, R. Carere, N. Wijesinghe, F. Nietlispach, R. Boone, S. Lauck, A. Cheung, and J. Webb. Transcatheter aortic valve implantation: durability of clinical and hemodynamic outcomes beyond 3 years in a large patient cohort. Circulation 122(13):1319–1327, 2010.CrossRefGoogle Scholar
  18. 18.
    International Standards Organization. International Standards Organization. ISO5840: Cardiovascular implants-Cardiac valve prosthesis (Committee draft). Geneva, Switzerland: International Standards Organization, 1994.Google Scholar
  19. 19.
    Iung, B., G. Baron, E. G. Butchart, F. Delahaye, C. Gohlke-Barwolf, O. W. Levang, P. Tornos, J. L. Vanoverschelde, F. Vermeer, E. Boersma, P. Ravaud, and A. Vahanian. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 24(13):1231–1243, 2003.CrossRefGoogle Scholar
  20. 20.
    Kvidal, P., R. Bergstrom, L. G. Horte, and E. Stahle. Observed and relative survival after aortic valve replacement. J. Am. Coll. Cardiol. 35(3):747–756, 2000.CrossRefGoogle Scholar
  21. 21.
    Li, K., and W. Sun. Computational modeling of patient-specific aortic root. In: 2009 BMES Annual Meeting, Paper No. 2320. Pittsburgh, PA: David L. Lawrence Convention Center, 2009.Google Scholar
  22. 22.
    Marcheix, B., Y. Lamarche, C. Berry, A. Asgar, J. Laborde, A. Basmadjian, A. Ducharme, A. Denault, R. Bonan, and R. Cartier. Surgical aspects of endovascular retrograde implantation of the aortic CoreValve bioprosthesis in high-risk older patients with severe symptomatic aortic stenosis. J. Thorac. Cardiovasc. Surg. 5(134):1150–1156, 2007.Google Scholar
  23. 23.
    Marquez, S., R. T. Hon, and A. P. Yoganathan. Comparative hydrodynamic evaluation of bioprosthetic heart valves. J. Heart Valve Dis. 10(6):802–811, 2001.Google Scholar
  24. 24.
    Martin, C., T. Pham, and W. Sun. Significant differences in the material properties between aged human and porcine aortic tissues. Eur. J. Cardiothorac. Surg., 2010 (in press).Google Scholar
  25. 25.
    Merrill, E., E. Gilliland, G. Cokelet, H. Shin, A. Britten, and R. Wells, Jr. Rheology of human blood, near and at zero flow. Effects of temperature and hematocrit level. Biophys. J. 3:199–213, 1963.CrossRefGoogle Scholar
  26. 26.
    Olufsen, M. Structured tree outflow condition for blood flow in larger systemic arteries. Am. J. Physiol. 276(12):H257–H268, 1999.Google Scholar
  27. 27.
    Prosthetic Devices Branch, D. o. C., Respiratory and Neurological Devices. Replacement Heart Valve Guidance, No. Version 4.0. Rockfied, MD: Center for Devices and Radiological Health (FDA), 1993.Google Scholar
  28. 28.
    Roques, F., S. A. Nashef, P. Michel, E. Gauducheau, C. de Vincentiis, E. Baudet, J. Cortina, M. David, A. Faichney, F. Gabrielle, E. Gams, A. Harjula, M. T. Jones, P. P. Pintor, R. Salamon, and L. Thulin. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur. J. Cardiothorac. Surg. 15(6):816–822, 1999; (discussion 822–813).CrossRefGoogle Scholar
  29. 29.
    Sirois, E., and W. Sun. Computational Evaluation of Platelet Activation by a Bioprosthetic Heart Valve. Artif. Organs, 2010 (in press).Google Scholar
  30. 30.
    Stergiopulos, N., J. Meister, and N. Westerhof. Evaluation of methods for estimation of total arterial compliance. Am. J. Physiol. 268(4 Pt. 2):H1540–H1548, 1995.Google Scholar
  31. 31.
    Sun, W., A. Abad, and M. S. Sacks. Simulated bioprosthetic heart valve deformation under quasi-static loading. J. Biomech. Eng. 127(6):905–914, 2005.CrossRefGoogle Scholar
  32. 32.
    Sun, W., K. Li, and E. Sirois. Simulated elliptical bioprosthetic valve deformation: Implications for asymmetric transcatheter valve deployment. J Biomech., 2010.Google Scholar
  33. 33.
    Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar tissues. Biomech. Model. Mechanobiol. 4(2–3):190–199, 2005.CrossRefGoogle Scholar
  34. 34.
    Svensson, L., T. Dewey, S. Kapadia, E. Roselli, A. Stewart, M. Williams, W. Anderson, D. Brown, M. Leon, B. Lytle, J. Moses, M. Mack, M. Tuzcu, and C. Smith. United States feasibility study of transcatheter insertion of a stented aortic valve by the left ventricular apex. Ann. Thorac. Surg. 86(1):46–54, 2008.CrossRefGoogle Scholar
  35. 35.
    Wang, Q., C. Primiano, R. McKay, S. Kodali, and W. Sun. Measurement of full 3D reconstructed aortic root geometry for transcatheter aortic valve replacement. Catheter. Cardiovasc. Interv., 2010 (submitted).Google Scholar
  36. 36.
    Webb, J., S. Pasupati, K. Humphries, C. Thompson, L. Altwegg, R. Moss, A. Sinhal, R. Carere, B. Munt, D. Ricci, J. Ye, A. Cheung, and S. Lichtenstein. Percutaneous transarterial aortic valve replacement in selected high-risk patients with aortic stenosis. Circulation 7(116):755–763, 2007.CrossRefGoogle Scholar
  37. 37.
    Westerhof, N., J. Lankhaar, and B. Westerhof. The arterial Windkessel. Med. Biol. Eng. Comput. 47(2):131–141, 2009.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2011

Authors and Affiliations

  1. 1.Tissue Mechanics Lab, Biomedical Engineering Program, Mechanical Engineering DepartmentUniversity of ConnecticutStorrsUSA

Personalised recommendations