Cardiovascular Engineering and Technology

, Volume 1, Issue 2, pp 165–178 | Cite as

Role of Pathologic Shear Stress Alterations in Aortic Valve Endothelial Activation



Calcific aortic stenosis is the most common aortic valve (AV) disease and is triggered by an active inflammatory process involving endothelial activation and cytokine expression. Interfacing between the leaflet and the surrounding blood flow, shear stress is presumed to play an important role in endothelial injury. This study investigated the hypothesis that pathologic alterations in shear stress magnitude contribute to valvular endothelial activation via BMP-4- and TGF-β1-dependent mechanisms. The fibrosa of porcine AV leaflets was subjected to physiologic, sub-physiologic and supra-physiologic magnitudes of native oscillatory shear stress for 48 h. Endothelial activation was assessed via immunohistochemistry in terms of ICAM-1 and VCAM-1 expressions. Cytokine expression was investigated in terms of BMP-4 and TGF-β1. Pro- and anti-osteogenic media were used to characterize the role of those cytokines in the shear stress-induced pathological response. Supra-physiologic shear stress increased the expression of all biomarkers in a shear stress magnitude-dependent manner. In contrast, neither physiologic nor sub-physiologic shear stress elicited a pro-inflammatory response. While BMP-4 inhibition and supplementation had limited effects on endothelial activation, TGF-β1 supplementation increased the overall leaflet pro-inflammatory state and TGF-β1 inhibition reduced endothelial activation in response to elevated shear stress. Combined TGF-β1 and BMP-4 inhibition completely suppressed shear stress-induced endothelial activation. The results demonstrate that elevated shear stress activates the valvular endothelium on the fibrosa via a BMP-4- and TGF-β1-dependent pathway. The suggested synergy between those cytokines also provides new insights into the transduction of valvular hemodynamic alterations into a pathological response.


Aortic valve Endothelial activation Shear stress Cytokines Adhesion molecules 



The authors thank Steven DeLaurentis and Michael O’Connor (University of Notre Dame) for their assistance with the experiments, Leon Hluchota (University of Notre Dame) for his advice on the bioreactor design and fabrication, and Martin’s Custom Butchering (Wakarusa, IN) for supplying porcine hearts. This work was supported by the Faculty Research Program at the University of Notre Dame.


  1. 1.
    Balachandran, K., S. Konduri, P. Sucosky, H. Jo, and A. P. Yoganathan. An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann. Biomed. Eng. 34:1655–1665, 2006.CrossRefGoogle Scholar
  2. 2.
    Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. elevated cyclic stretch alters matrix remodeling in aortic valve cusps—implications for degenerative aortic valve disease? Am. J. Physiol. Heart Circ. Physiol. 296:H756–H764, 2009.CrossRefGoogle Scholar
  3. 3.
    Balachandran, K., P. Sucosky, H. Jo, and A. P. Yoganathan. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am. J. Pathol., 2010. doi: 10.2353/ajpath.2010.090631.
  4. 4.
    Braverman, A. C., H. Guven, M. A. Beardslee, M. Makan, A. M. Kates, and M. R. Moon. The bicuspid aortic valve. Curr. Probl. Cardiol. 30:470–522, 2005.CrossRefGoogle Scholar
  5. 5.
    Butcher, J. T., A. M. Penrod, A. J. Garcia, and R. M. Nerem. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler. Thromb. Vasc. Biol. 24:1429–1434, 2004.CrossRefGoogle Scholar
  6. 6.
    Butcher, J. T., S. Tressel, T. Johnson, D. Turner, G. Sorescu, H. Jo, and R. M. Nerem. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler. Thromb. Vasc. Biol. 26:69–77, 2006.CrossRefGoogle Scholar
  7. 7.
    Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1160, 1969.CrossRefGoogle Scholar
  8. 8.
    Caro, C. G., J. M. Fitz-Gerald, and R. C. Schroter. Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis. Proc. R. Soc. Lond. B Biol. Sci. 177:109–159, 1971.CrossRefGoogle Scholar
  9. 9.
    Chambers, J. B. Aortic stenosis. Eur. J. Echocardiogr. 10:i11–i19, 2009.CrossRefGoogle Scholar
  10. 10.
    Clark-Greuel, J. N., J. M. Connolly, E. Sorichillo, N. R. Narula, H. S. Rapoport, E. R. Mohler, III, J. H. Gorman, III, R. C. Gorman, and R. J. Levy. Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann. Thorac. Surg. 83:946–953, 2007.CrossRefGoogle Scholar
  11. 11.
    Farivar, R. S., L. H. Cohn, E. G. Soltesz, T. Mihaljevic, J. D. Rawn, and J. G. Byrne. Transcriptional profiling and growth kinetics of endothelium reveals differences between cells derived from porcine aorta versus aortic valve. Eur. J. Cardiothorac. Surg. 24:527–534, 2003.CrossRefGoogle Scholar
  12. 12.
    Gazzerro, E., and E. Canalis. Bone morphogenetic proteins and their antagonists. Rev. Endocr. Metab. Disord. 7:51–65, 2006.CrossRefGoogle Scholar
  13. 13.
    Ge, L., and F. Sotiropoulos. A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225:1782–1809, 2007.MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Goldbarg, S. H., S. Elmariah, M. A. Miller, and V. Fuster. Insights into degenerative aortic valve disease. J. Am. Coll. Cardiol. 50:1205–1213, 2007.CrossRefGoogle Scholar
  15. 15.
    Gupta, V., and K. J. Grande-Allen. Effects of static and cyclic loading in regulating extracellular matrix synthesis by cardiovascular cells. Cardiovasc. Res. 72:375–383, 2006.CrossRefGoogle Scholar
  16. 16.
    Hakuno, D., N. Kimura, M. Yoshioka, and K. Fukuda. Molecular mechanisms underlying the onset of degenerative aortic valve disease. J. Mol. Med. 87:17–24, 2009.CrossRefGoogle Scholar
  17. 17.
    Harasaki, H., H. Hanano, J. Tanaka, K. Tokunaga, and M. Torisu. Surface structure of the human cardiac valve. A comparative study of normal and diseased valves. J. Cardiovasc. Surg. (Torino) 19:281–290, 1978.Google Scholar
  18. 18.
    Inman, G. J., F. J. Nicolas, J. F. Callahan, J. D. Harling, L. M. Gaster, A. D. Reith, N. J. Laping, and C. S. Hill. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol. 62:65–74, 2002.CrossRefGoogle Scholar
  19. 19.
    Iung, B., C. Gohlke-Barwolf, P. Tornos, C. Tribouilloy, R. Hall, E. Butchart, A. Vahanian, and Working Group on Valvular Heart Disease. Recommendations on the management of the asymptomatic patient with valvular heart disease. Eur. Heart J. 23:1253–1266, 2002.CrossRefGoogle Scholar
  20. 20.
    Jian, B., N. Narula, Q. Y. Li, E. R. Mohler, III, and R. J. Levy. Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 75:457–465, 2003; (discussion 465–6).CrossRefGoogle Scholar
  21. 21.
    Kadem, L., J. G. Dumesnil, R. Rieu, L. G. Durand, D. Garcia, and P. Pibarot. Impact of systemic hypertension on the assessment of aortic stenosis. Heart 91:354–361, 2005.CrossRefGoogle Scholar
  22. 22.
    Kaden, J. J., S. Bickelhaupt, R. Grobholz, C. F. Vahl, S. Hagl, M. Brueckmann, K. K. Haase, C. E. Dempfle, and M. Borggrefe. Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J. Heart Valve Dis. 13:560–566, 2004.Google Scholar
  23. 23.
    Kaden, J. J., and D. Haghi. Hypertension in aortic valve stenosis—a Trojan horse. Eur. Heart J. 29:1934–1935, 2008.CrossRefGoogle Scholar
  24. 24.
    Kilner, P. J., G. Z. Yang, A. J. Wilkes, R. H. Mohiaddin, D. N. Firmin, and M. H. Yacoub. Asymmetric redirection of flow through the heart. Nature 404:759–761, 2000.CrossRefGoogle Scholar
  25. 25.
    Laping, N. J., E. Grygielko, A. Mathur, S. Butter, J. Bomberger, C. Tweed, W. Martin, J. Fornwald, R. Lehr, J. Harling, L. Gaster, J. F. Callahan, and B. A. Olson. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol. Pharmacol. 62:58–64, 2002.CrossRefGoogle Scholar
  26. 26.
    Lee, Y. S., and Y. Y. Chou. Pathogenetic mechanism of senile calcific aortic stenosis: the role of apoptosis. Chin. Med. J. (Engl) 111:934–939, 1998.Google Scholar
  27. 27.
    Liu, A. C., V. R. Joag, and A. I. Gotlieb. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am. J. Pathol. 171:1407–1418, 2007.CrossRefGoogle Scholar
  28. 28.
    Mascherbauer, J., C. Fuchs, M. Stoiber, H. Schima, E. Pernicka, G. Maurer, and H. Baumgartner. Systemic pressure does not directly affect pressure gradient and valve area estimates in aortic stenosis in vitro. Eur. Heart J. 29:2049–2057, 2008.CrossRefGoogle Scholar
  29. 29.
    Mohler, III, E. R., M. K. Chawla, A. W. Chang, N. Vyavahare, R. J. Levy, L. Graham, and F. H. Gannon. Identification and characterization of calcyfying cells from human and canine aortic valves. J. Heart Valve Dis. 8:254–260, 1999.Google Scholar
  30. 30.
    Mohler, III, E. R., F. Gannon, C. Reynolds, R. Zimmerman, M. G. Keane, and F. S. Kaplan. Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528, 2001.Google Scholar
  31. 31.
    O’Brien, K. D. Pathogenesis of calcific aortic valve disease: a disease process comes of age (and a good deal more). Arterioscler. Thromb. Vasc. Biol. 26:1721–1728, 2006.CrossRefGoogle Scholar
  32. 32.
    O’Brien, K. D., D. D. Reichenbach, S. M. Marcovina, J. Kuusisto, C. E. Alpers, and C. M. Otto. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler. Thromb. Vasc. Biol. 16:523–532, 1996.Google Scholar
  33. 33.
    Otto, C. M. Valvular aortic stenosis: disease severity and timing of intervention. J. Am. Coll. Cardiol. 47:2141–2151, 2006.CrossRefGoogle Scholar
  34. 34.
    Otto, C. M., J. Kuusisto, and D. D. Reichenbach. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90:844–853, 1994.Google Scholar
  35. 35.
    Paulsen, P. K., and J. M. Hasenkam. Three-dimensional visualization of velocity profiles in the ascending aorta in dogs, measured with a hot-film anemometer. J. Biomech. 16:201–210, 1983.CrossRefGoogle Scholar
  36. 36.
    Platt, M. O., Y. Xing, H. Jo, and A. P. Yoganathan. Cyclic pressure and shear stress regulate matrix metalloproteinases and cathepsin activity in porcine aortic valves. J. Heart Valve Dis. 15:622–629, 2006.Google Scholar
  37. 37.
    Rabkin, S. W. The association of hypertension and aortic valve sclerosis. Blood Press. 14:264–272, 2005.CrossRefGoogle Scholar
  38. 38.
    Rajamannan, N. M. Calcific aortic stenosis: lessons learned from experimental and clinical studies. Arterioscler. Thromb. Vasc. Biol. 29:162–168, 2009.CrossRefGoogle Scholar
  39. 39.
    Rajamannan, N. M., M. Subramaniam, D. Rickard, S. R. Stock, J. Donovan, M. Springett, T. Orszulak, D. A. Fullerton, A. J. Tajik, R. O. Bonow, and T. Spelsberg. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184, 2003.CrossRefGoogle Scholar
  40. 40.
    Sacks, M. S., and A. P. Yoganathan. Heart valve function: a biomechanical perspective. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362:1369–1391, 2007.CrossRefGoogle Scholar
  41. 41.
    Schneider, P., and J. Deck. Tissue and cell renewal in the natural aortic valve of rats: an autoradiographic study. Cardiovasc. Res. 15:181–189, 1981.CrossRefGoogle Scholar
  42. 42.
    Simmons, C. A. Aortic valve mechanics: an emerging role for the endothelium. J. Am. Coll. Cardiol. 53:1456–1458, 2009.CrossRefGoogle Scholar
  43. 43.
    Simmons, C. A., G. R. Grant, E. Manduchi, and P. F. Davies. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ. Res. 96:792–799, 2005.CrossRefGoogle Scholar
  44. 44.
    Stewart, B. F., D. Siscovick, B. K. Lind, J. M. Gardin, J. S. Gottdiener, and V. E. Smith. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J. Am. Coll. Cardiol. 29:630–634, 1997.CrossRefGoogle Scholar
  45. 45.
    Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29:254–260, 2009.CrossRefGoogle Scholar
  46. 46.
    Sucosky, P., M. Padala, A. Elhammali, K. Balachandran, H. Jo, and A. P. Yoganathan. Design of an ex vivo culture system to investigate the effects of shear stress on cardiovascular tissue. J. Biomech. Eng. 130:035001-1–035001-8, 2008.CrossRefGoogle Scholar
  47. 47.
    Walker, G. A., K. S. Masters, D. N. Shah, K. S. Anseth, and L. A. Leinwand. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ. Res. 95:253–260, 2004.CrossRefGoogle Scholar
  48. 48.
    Weber, K. T., Y. Sun, L. C. Katwa, J. P. Cleutjens, and G. Zhou. Connective tissue and repair in the heart. Potential regulatory mechanisms. Ann. N. Y. Acad. Sci. 752:286–299, 1995.CrossRefGoogle Scholar
  49. 49.
    Weston, M. W., D. V. LaBorde, and A. P. Yoganathan. Estimation of the shear stress on the surface of an aortic valve leaflet. Ann. Biomed. Eng. 27:572–579, 1999.CrossRefGoogle Scholar
  50. 50.
    Weston, M. W., and A. P. Yoganathan. Biosynthetic activity in heart valve leaflets in response to in vitro flow environments. Ann. Biomed. Eng. 29:752–763, 2001.CrossRefGoogle Scholar
  51. 51.
    Willems, I. E., M. G. Havenith, J. F. Smits, and M. J. Daemen. Structural alterations in heart valves during left ventricular pressure overload in the rat. Lab. Invest. 71:127–133, 1994.Google Scholar
  52. 52.
    Xing, Y., J. N. Warnock, Z. He, S. L. Hilbert, and A. P. Yoganathan. Cyclic pressure affects the biological properties of porcine aortic valve leaflets in a magnitude- and frequency-dependent manner. Ann. Biomed. Eng. 32:1461–1470, 2004.CrossRefGoogle Scholar
  53. 53.
    Yip, C. Y., J. H. Chen, R. Zhao, and C. A. Simmons. Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler. Thromb. Vasc. Biol. 29:936–942, 2009.CrossRefGoogle Scholar
  54. 54.
    Zimmerman, L. B., J. M. De Jesus-Escobar, and R. M. Harland. The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86:599–606, 1996.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  1. 1.Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameUSA
  2. 2.Department of Aerospace and Mechanical EngineeringUniversity of Notre DameNotre DameUSA

Personalised recommendations