Advertisement

Cardiovascular Engineering and Technology

, Volume 1, Issue 2, pp 138–153 | Cite as

Design and Testing of a Pulsatile Conditioning System for Dynamic Endothelialization of Polyphenol-Stabilized Tissue Engineered Heart Valves

  • Leslie Neil Sierad
  • Agneta Simionescu
  • Christopher Albers
  • Joseph Chen
  • Jordan Maivelett
  • Mary Elizabeth Tedder
  • Jun Liao
  • Dan T. SimionescuEmail author
Article

Abstract

Heart valve tissue engineering requires biocompatible and hemocompatible scaffolds that undergo remodeling and repopulation, but that also withstand harsh mechanical forces immediately following implantation. We hypothesized that reversibly stabilized acellular porcine valves, seeded with endothelial cells and conditioned in pulsatile bioreactors would pave the way for next generations of tissue engineered heart valves (TEHVs). A novel valve conditioning system was first designed, manufactured and tested to adequately assess TEHVs. The bioreactor created proper closing and opening of valves and allowed for multiple mounting methods in sterile conditions. Porcine aortic heart valve roots were decellularized by chemical extractions and treated with penta-galloyl glucose (PGG) for stabilization. Properties of the novel scaffolds were evaluated by testing resistance to collagenase and elastase, biaxial mechanical analysis, and thermal denaturation profiles. Porcine aortic endothelial cells were seeded onto the leaflets and whole aortic roots were mounted within the dynamic pulsatile heart valve bioreactor system under physiologic pulmonary valve pressures and analyzed after 17 days for cell viability, morphology, and metabolic activity. Our tissue preparation methods effectively removed cells, including the potent α-Gal antigen, while leaving a well preserved extracellular matrix scaffold with adequate mechanical properties. PGG enhanced stabilization of extracellular matrix components but also showed the ability to be reversible. Engineered valve scaffolds encouraged attachment and survival of endothelial cells for extended periods and showed signs of widespread cell coverage after conditioning. Our novel approach shows promise toward development of sturdy and durable TEHVs capable of remodeling and cellular repopulation.

Keywords

Tissue engineered heart valves Stabilization Endothelial cells Biaxial mechanical testing Scanning electron microscopy 

Notes

Acknowledgments

This work was funded in part by National Institutes of Health grants P20 RR-016461 and HL084194 (DS) and HL097321 (JL). J. M. was funded in part by Howard Hughes Medical Institute and the South Carolina Life Undergraduate Research Program. The authors wish to thank Snow Creek Meat Processing (Seneca, SC) for generous access to tissues, Clemson University Machining and Technical Services (Clemson, SC) for bioreactor manufacturing, Mrs. Linda Jenkins, HT, ASCP for help with histology and Mr. Jeremy Mercuri for help with tissue collection.

Supplementary material

Video showing a glutaraldehyde-fixed stented porcine bioprosthetic aortic heart valve functioning in the heart valve bioreactor. Top view (from aorta) recorded through the atrial chamber. To view continuous action please use “loop” feature of the media player (MPG 6900 kb)

Video showing a PGG-treated decellularized and endothelial cell-seeded heart valve functioning in the heart valve bioreactor in DMEM cell culture medium (red fluid). Top view (from aorta) recorded through the atrial chamber. This is the same as valve (a) in Fig. 6; the right coronary cusp is shown on the lower left corner of the valve sinus. To view continuous action please use “loop” feature of the media player (AVI 894 kb)

References

  1. 1.
    Azimzadeh, A., P. Wolf, K. Thibaudeau, J. Cinqualbre, J. P. Soulillou, and I. Anegon. Comparative study of target antigens for primate xenoreactive natural antibodies in pig and rat endothelial cells. Transplantation 64(8):1166–1174, 1997.CrossRefGoogle Scholar
  2. 2.
    Baraki, H., I. Tudorache, M. Braun, K. Höffler, A. Görler, A. Lichtenberg, C. Bara, A. Calistru, G. Brandes, M. Hewicker-Trautwein, A. Hilfiker, A. Haverich, and S. Cebotari. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 30(31):6240–6246, 2009.CrossRefGoogle Scholar
  3. 3.
    Billiar, K. L., and M. S. Sacks. Biaxial mechanical properties of the natural and glutaraldehyde treated aortic valve cusp. Part I: Experimental results. J. Biomech. Eng. 122(1):23–30, 2000.CrossRefGoogle Scholar
  4. 4.
    Chuang, T. H., C. Stabler, A. Simionescu, and D. T. Simionescu. Polyphenol-stabilized tubular elastin scaffolds for tissue engineered vascular grafts. Tissue Eng. Part A 15(10):2837–2851, 2009.CrossRefGoogle Scholar
  5. 5.
    Dym, C. L., and P. Little. Engineering Design: A Project-Based Introduction (2nd ed.). John Wiley & Sons, 2004.Google Scholar
  6. 6.
    Flanagan, T. C., C. Cornelissen, S. Koch, B. Tschoeke, J. S. Sachweh, T. Schmitz-Rode, and S. Jockenhoevel. The in vitro development of autologous fibrin-based tissue-engineered heart valves through optimised dynamic conditioning. Biomaterials 28(23):3388–3397, 2007.CrossRefGoogle Scholar
  7. 7.
    Grashow, J. S., A. P. Yoganathan, and M. S. Sacks. Biaxial stress-stretch behavior of the mitral valve anterior leaflet at physiologic strain rates. Ann. Biomed. Eng. 34(2):315–325, 2006.CrossRefGoogle Scholar
  8. 8.
    Hildebrand, D. K., Z. J. Wu, J. E. Mayer, and M. S. Sacks. Design and hydrodynamic evaluation of a novel pulsatile bioreactor for biologically active heart valves. Ann. Biomed. Eng. 32(8):1039–1049, 2004.CrossRefGoogle Scholar
  9. 9.
    Hoerstrup, S. P., R. Sodian, S. Daebritz, J. Wang, E. A. Bacha, D. P. Martin, A. M. Moran, K. J. Guleserian, J. S. Sperling, S. Kaushal, J. P. Vacanti, F. J. Schoen, and J. E. Mayer, Jr. Functional living trileaflet heart valves grown in vitro. Circulation 102(19 Suppl 3):III44–III49, 2000.Google Scholar
  10. 10.
    Hoerstrup, S. P., R. Sodian, J. S. Sperling, J. P. Vacanti, and J. E. Mayer. New pulsatile bioreactor for in vitro formation of tissue engineered heart valves. Tissue Eng. 6(1):75–79, 2000.CrossRefGoogle Scholar
  11. 11.
    Hoerstrup, S. P., G. Zund, A. M. Schnell, S. A. Kolb, J. F. Visjager, A. Schoeberlein, and M. Turina. Optimized growth conditions for tissue engineering of human cardiovascular structures. Int. J. Artif. Organs 23(12):817–823, 2000.Google Scholar
  12. 12.
    Iop, L., V. Renier, F. Naso, M. Piccoli, A. Bonetti, A. Gandaglia, M. Pozzobon, A. Paolin, F. Ortolani, M. Marchini, M. Spina, P. De Coppi, S. Sartore, and G. Gerosa. The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Biomaterials 30(25):4104–4116, 2009.CrossRefGoogle Scholar
  13. 13.
    Isenburg, J. C., D. T. Simionescu, B. C. Starcher, and N. R. Vyavahare. Elastin stabilization for treatment of abdominal aortic aneurysms. Circulation 115(13):1729–1737, 2007.CrossRefGoogle Scholar
  14. 14.
    Kasimir, M. T., E. Rieder, G. Seebacher, A. Nigisch, B. Dekan, E. Wolner, G. Weigel, and P. Simon. Decellularization does not eliminate thrombogenicity and inflammatory stimulation in tissue-engineered porcine heart valves. J. Heart Valve Dis. 15(2):278–286, 2006; (discussion 286).Google Scholar
  15. 15.
    Kasimir, M. T., E. Rieder, G. Seebacher, G. Silberhumer, E. Wolner, G. Weigel, and P. Simon. Comparison of different decellularization procedures of porcine heart valves. Int. J. Artif. Organs 26(5):421–427, 2003.Google Scholar
  16. 16.
    Ku, C. H., P. H. Johnson, P. Batten, P. Sarathchandra, R. C. Chambers, P. M. Taylor, M. H. Yacoub, and A. H. Chester. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc. Res. 71(3):548–556, 2006.CrossRefGoogle Scholar
  17. 17.
    Lee, D. J., J. Steen, J. E. Jordan, E. H. Kincaid, N. D. Kon, A. Atala, J. Berry, and J. J. Yoo. Endothelialization of heart valve matrix using a computer-assisted pulsatile bioreactor. Tissue Eng. Part A 15(4):807–814, 2009.CrossRefGoogle Scholar
  18. 18.
    Liao, J., E. M. Joyce, and M. S. Sacks. Effects of decellularization on mechanical and structural properties of the porcine aortic valve leaflets. Biomaterials 29(8):1065–1074, 2008.CrossRefGoogle Scholar
  19. 19.
    Lichtenberg, A., S. Cebotari, I. Tudorache, G. Sturz, M. Winterhalter, A. Hilfiker, and A. Haverich. Flow-dependent re-endothelialization of tissue-engineered heart valves. J. Heart Valve Dis. 15(2):287–293, 2006; (discussion 293-284).Google Scholar
  20. 20.
    Lichtenberg, A., I. Tudorache, S. Cebotari, S. Ringes-Lichtenberg, G. Sturz, K. Hoeffler, C. Hurscheler, G. Brandes, A. Hilfiker, and A. Haverich. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 27(23):4221–4229, 2006.CrossRefGoogle Scholar
  21. 21.
    Mendelson, K., E. Aikawa, B. A. Mettler, V. Sales, D. Martin, J. E. Mayer, and F. J. Schoen. Healing and remodeling of bioengineered pulmonary artery patches implanted in sheep. Cardiovasc. Pathol. 16(5):277–282, 2007.CrossRefGoogle Scholar
  22. 22.
    Mendelson, K., and F. J. Schoen. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann. Biomed. Eng. 34(12):1799–1819, 2006.CrossRefGoogle Scholar
  23. 23.
    Merryman, W. D., J. G. C. Engelmayr, J. Liao, and M. S. Sacks. Defining biomechanical endpoints for tissue engineered heart valve leaflets from native leaflet properties. Tissue Bio-Eng. Congenit. Cardiac Dis. 21(2):153–160, 2006.Google Scholar
  24. 24.
    Mikos, A. G., S. W. Herring, P. Ochareon, J. Elisseeff, H. H. Lu, R. Kandel, F. J. Schoen, M. Toner, D. Mooney, A. Atala, M. E. Van Dyke, D. Kaplan, and G. Vunjak-Novakovic. Engineering complex tissues. Tissue Eng. 12(12):3307–3339, 2006.CrossRefGoogle Scholar
  25. 25.
    Mol, A., N. Driessen, M. Rutten, S. Hoerstrup, C. Bouten, and F. Baaijens. Tissue engineering of human heart valve leaflets: a novel bioreactor for a strain-based conditioning approach. Ann. Biomed. Eng. 33(12):1778–1788, 2005.CrossRefGoogle Scholar
  26. 26.
    Ruel, J., and G. Lachance. A new bioreactor for the development of tissue-engineered heart valves. Ann. Biomed. Eng. 37(4):674–681, 2009.CrossRefGoogle Scholar
  27. 27.
    Sacks, M. S., and C. J. Chuong. Biaxial mechanical properties of passive right ventricular free wall myocardium. J. Biomech. Eng. 115:202–205, 1992.CrossRefGoogle Scholar
  28. 28.
    Schenke-Layland, K., F. Opitz, M. Gross, C. Doring, K. J. Halbhuber, F. Schirrmeister, T. Wahlers, and U. A. Stock. Complete dynamic repopulation of decellularized heart valves by application of defined physical signals—an in vitro study. Cardiovasc. Res. 60(3):497–509, 2003.CrossRefGoogle Scholar
  29. 29.
    Schmidt, D., and S. P. Hoerstrup. Tissue engineered heart valves based on human cells. Swiss Med. Wkly 136(39–40):618–623, 2006.Google Scholar
  30. 30.
    Schmidt, D., and S. P. Hoerstrup. Tissue engineered heart valves based on human cells. Swiss Med. Wkly 137(Suppl 155):80S–85S, 2007.Google Scholar
  31. 31.
    Schoen, F. J. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118(18):1864–1880, 2008.CrossRefGoogle Scholar
  32. 32.
    Simon, P., M. T. Kasimir, G. Seebacher, G. Weigel, R. Ullrich, U. Salzer-Muhar, E. Rieder, and E. Wolner. Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardiothorac. Surg. 23(6):1002–1006, 2003; (discussion 1006).CrossRefGoogle Scholar
  33. 33.
    Strokan, V., J. Molne, C. T. Svalander, and M. E. Breimer. Heterogeneous expression of Gal alpha1–3Gal xenoantigen in pig kidney: a lectin and immunogold electron microscopic study. Transplantation 66(11):1495–1503, 1998.CrossRefGoogle Scholar
  34. 34.
    Tedder, M. E., J. Liao, B. Weed, C. Stabler, H. Zhang, A. Simionescu, and D. T. Simionescu. Stabilized collagen scaffolds for heart valve tissue engineering. Tissue Eng. Part A 15(6):1257–1268, 2009.CrossRefGoogle Scholar
  35. 35.
    Valente, M., M. Minarini, A. F. Maizza, U. Bortolotti, and G. Thiene. Heart valve bioprosthesis durability: a challenge to the new generation of porcine valves. Eur. J. Cardiothorac. Surg. 6(Suppl 1):S82–S90, 1992.CrossRefGoogle Scholar
  36. 36.
    Zeltinger, J., L. K. Landeen, H. G. Alexander, I. D. Kidd, and B. Sibanda. Development and characterization of tissue-engineered aortic valves. Tissue Eng. 7(1):9–22, 2001.CrossRefGoogle Scholar
  37. 37.
    Zhai, W., J. Chang, K. Lin, J. Wang, Q. Zhao, and X. Sun. Crosslinking of decellularized porcine heart valve matrix by procyanidins. Biomaterials 27(19):3684–3690, 2006.Google Scholar
  38. 38.
    Zhai, W., X. Lü, J. Chang, Y. Zhou, and H. Zhang. Quercetin-crosslinked porcine heart valve matrix: mechanical properties, stability, anticalcification and cytocompatibility. Acta Biomater. 6(2):389–395, 2010.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • Leslie Neil Sierad
    • 1
  • Agneta Simionescu
    • 1
  • Christopher Albers
    • 1
  • Joseph Chen
    • 2
  • Jordan Maivelett
    • 1
  • Mary Elizabeth Tedder
    • 1
  • Jun Liao
    • 2
  • Dan T. Simionescu
    • 1
    Email author
  1. 1.Biocompatibility and Tissue Regeneration Laboratory, Department of BioengineeringClemson UniversityClemsonUSA
  2. 2.Department of Agricultural and Biological EngineeringMississippi State UniversityMississippi StateUSA

Personalised recommendations