Biodegradable Stents: Biomechanical Modeling Challenges and Opportunities

  • James E. MooreJr.Email author
  • Joao S. Soares
  • Kumbakonam R. Rajagopal


Biodegradable implants show great potential in many areas of medicine, and have already demonstrated success in simple applications such as sutures. For more complex devices, such as vascular stents, there are considerable challenges associated with the use of biodegradable materials. These materials typically are weaker than the metals currently used to construct stents, so it is difficult to ensure sufficient strength to prop open the artery and alleviate symptoms acutely. It is even more challenging to design a stent that provides structural support for a predictable, appropriate time to facilitate artery healing. These challenges are evident when one considers that there are no biodegradable stents on the US market despite more than 20 years of development efforts. This review summarizes previous efforts at implementing biodegradable stents, discusses the specific challenges involved, and presents a recently developed biodegradable material modeling framework that can benefit this exciting field.


Polymer Corrodible metals Scission Degradation Erosion Mechanical properties 



The authors gratefully acknowledge support from the National Institutes of Health (R01 EB000115 to JEM), the Portuguese Fundação para a Ciência e Tecnologia (SFRH/BD/17060/2004 and SFRH/BPD/63119/2009 to JSS), and the National Science Foundation (to KRR).


  1. 1.
    Agrawal, C. M., and H. G. Clark. Deformation characteristics of a bioabsorbable intravascular stent. Invest. Radiol. 27:1020–1024, 1992.CrossRefGoogle Scholar
  2. 2.
    Agrawal, C. M., K. F. Haas, D. A. Leopold, et al. Evaluation of poly(l-lactic acid) as a material for intravascular polymeric stents. Biomaterials 13:176–182, 1992.CrossRefGoogle Scholar
  3. 3.
    Agrawal, C. M., and R. B. Ray. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J. Biomed. Mater. Res. 55:141–150, 2001.CrossRefGoogle Scholar
  4. 4.
    Ali, S. A., P. J. Doherty, and D. F. Williams. Mechanisms of polymer degradation in implantable devices. 2. Poly(Dl-lactic acid). J. Biomed. Mater. Res. 27:1409–1418, 1993.CrossRefGoogle Scholar
  5. 5.
    Ali, S. A., S. P. Zhong, P. J. Doherty, et al. Mechanisms of polymer degradation in implantable devices. 1. Poly(caprolactone). Biomaterials 14:648–656, 1993.CrossRefGoogle Scholar
  6. 6.
    Arshady, R. Biodegradable Polymers. London: Citus Books, 2003.Google Scholar
  7. 7.
    Bedoya, J., C. A. Meyer, L. H. Timmins, et al. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765, 2006.CrossRefGoogle Scholar
  8. 8.
    Bier, J. D., P. Zalesky, S. T. Li, et al. A new bioabsorbable intravascular stent: in vitro assessment of hemodynamic and morphometric characteristics. J. Interv. Cardiol. 5:187–194, 1992.CrossRefGoogle Scholar
  9. 9.
    Bosiers, M., P. Peeters, O. D’Archambeau, et al. Ams insight—absorbable metal stent implantation for treatment of below-the-knee critical limb ischemia: 6-month analysis. Cardiovasc. Intervent. Radiol. 32:424–435, 2009.CrossRefGoogle Scholar
  10. 10.
    Bunger, C. M., N. Grabow, K. Sternberg, et al. A biodegradable stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for peripheral vascular application: preliminary experience in the pig. J. Endovasc. Ther. 14:725–733, 2007.CrossRefGoogle Scholar
  11. 11.
    Bunger, C. M., N. Grabow, K. Sternberg, et al. Sirolimus-eluting biodegradable poly-l-lactide stent for peripheral vascular application: a preliminary study in porcine carotid arteries. J. Surg. Res. 139:77–82, 2007.CrossRefGoogle Scholar
  12. 12.
    Burkersroda, Fv., L. Schedl, and A. Gopferich. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23:4221–4231, 2002.CrossRefGoogle Scholar
  13. 13.
    Chu, C. C. Strain-Accelerated Hydrolytic Degradation of Synthetic Absorbable Sutures, edited by C. W. Hall. San Antonio, 1985, pp. 111–115.Google Scholar
  14. 14.
    Colombo, A., and E. Karvouni. Biodegradable stents: “fulfilling the mission and stepping away”. Circulation 102:371–373, 2000.Google Scholar
  15. 15.
    Drynda, A., N. Deinet, N. Braun, et al. Rare earth metals used in biodegradable magnesium-based stents do not interfere with proliferation of smooth muscle cells but do induce the upregulation of inflammatory genes. J. Biomed. Mater. Res. A 91:360–369, 2009.Google Scholar
  16. 16.
    Erbel, R., C. Di Mario, J. Bartunek, et al. Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet 369:1869–1875, 2007.CrossRefGoogle Scholar
  17. 17.
    Farb, A., D. K. Weber, F. D. Kolodgie, et al. Morphological predictors of restenosis after coronary stenting in humans. Circulation 105:2974–2980, 2002.CrossRefGoogle Scholar
  18. 18.
    Folkman, J., and D. M. Long. The use of silicone rubber as a carrier for prolonged drug therapy. J. Surg. Res. 4:139–142, 1964.CrossRefGoogle Scholar
  19. 19.
    Gopferich, A. Polymer degradation and erosion: mechanisms and applications. Eur. J. Pharm. Biopharm. 4:1–11, 1996.Google Scholar
  20. 20.
    Gopferich, A. Bioerodible implants with programmable drug release. J. Control. Release 44:271–281, 1997.CrossRefGoogle Scholar
  21. 21.
    Gopferich, A. Mechanisms of polymer degradation and elimination. In: Handbook of Biodegradable Polymers, edited by A. J. Domb, et al. Australia: Harwood Academic Publishers, 1997, pp. 451–471.Google Scholar
  22. 22.
    Grabow, N., C. M. Bunger, C. Schultze, et al. A biodegradable slotted tube stent based on poly(l-lactide) and poly(4-hydroxybutyrate) for rapid balloon-expansion. Ann. Biomed. Eng. 35:2031–2038, 2007.CrossRefGoogle Scholar
  23. 23.
    Grabow, N., H. Martin, and K. P. Schmitz. The impact of material characteristics on the mechanical properties of a poly(l-lactide) coronary stent. Biomed. Tech. (Berl) 47(Suppl 1 Pt 1):503–505, 2002.CrossRefGoogle Scholar
  24. 24.
    Grabow, N., M. Schlun, K. Sternberg, et al. Mechanical properties of laser cut poly(l-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. J. Biomech. Eng. 127:25–31, 2005.CrossRefGoogle Scholar
  25. 25.
    Grassi, M., and G. Grassi. Mathematical modelling and controlled drug delivery: matrix systems. Curr. Drug Deliv. 2:97–116, 2005.CrossRefGoogle Scholar
  26. 26.
    Hayashi, T. Biodegradable polymers for biomedical uses. Prog. Polym. Sci. 19:663–702, 1994.CrossRefGoogle Scholar
  27. 27.
    Heublein, B., R. Rohde, V. Kaese, et al. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart 89:651–656, 2003.CrossRefGoogle Scholar
  28. 28.
    Hietala, E. M., U. S. Salminen, A. Stahls, et al. Biodegradation of the copolymeric polylactide stent. Long-term follow-up in a rabbit aorta model. J. Vasc. Res. 38:361–369, 2001.CrossRefGoogle Scholar
  29. 29.
    Hyon, S. H., K. Jamshidi, and Y. Ikada. Effects of residual monomer on the degradation of Dl-lactide polymer. Polym. Int. 46:196–202, 1998.CrossRefGoogle Scholar
  30. 30.
    Kastrati, A., D. Hall, and A. Schomig. Long-term outcome after coronary stenting. Curr. Contr. Trials C 1:48–54, 2000.CrossRefGoogle Scholar
  31. 31.
    Katti, D. S., S. Lakshmi, R. Langer, et al. Toxicity, biodegradation and elimination of polyanhydrides. Adv. Drug Deliv. Rev. 54:933–961, 2002.CrossRefGoogle Scholar
  32. 32.
    Kimura, T., H. Yokoi, Y. Nakagawa, et al. Three-year follow-up after implantation of metallic coronary-artery stents. N. Engl. J. Med. 334:561–566, 1996.CrossRefGoogle Scholar
  33. 33.
    Kolachalama, V. B., A. R. Tzafriri, D. Y. Arifin, et al. Luminal flow patterns dictate arterial drug deposition in stent-based delivery. J. Control. Release 133:24–30, 2009.CrossRefGoogle Scholar
  34. 34.
    Labinaz, M., J. P. Zidar, R. S. Stack, et al. Biodegradable stents: the future of interventional cardiology? J. Interv. Cardiol. 8:395–405, 1995.CrossRefGoogle Scholar
  35. 35.
    Langer, R. Drug delivery and targeting. Nature 392:5–10, 1998.Google Scholar
  36. 36.
    Laufman, H., and T. Rubel. Synthetic absorable sutures. Surg. Gynecol. Obstet. 145:597–608, 1977.Google Scholar
  37. 37.
    Li, S. M., and S. McCarthy. Further investigations on the hydrolytic degradation of poly(Dl-lactide). Biomaterials 20:35–44, 1999.CrossRefGoogle Scholar
  38. 38.
    Li, S. M., and M. Vert. Morphological-changes resulting from the hydrolytic degradation of stereocopolymers derived from L-lactides and Dl-lactides. Macromolecules 27:3107–3110, 1994.CrossRefGoogle Scholar
  39. 39.
    Maeng, M., L. O. Jensen, E. Falk, et al. Negative vascular remodelling after implantation of bioabsorbable magnesium alloy stents in porcine coronary arteries: a randomised comparison with bare-metal and sirolimus-eluting stents. Heart 95:241–246, 2009.CrossRefGoogle Scholar
  40. 40.
    Mikkonen, J., I. Uurto, T. Isotalo, et al. Drug-eluting bioabsorbable stents—an in vitro study. Acta Biomater. 5:2894–2900, 2009.CrossRefGoogle Scholar
  41. 41.
    Miller, R. A., J. M. Brady, and D. E. Cutright. Degradation rates of oral resorbable implants (polylactates and polyglycolates): rate modification with changes in Pla/Pga copolymer ratios. J. Biomed. Mater. Res. 11:711–719, 1977.CrossRefGoogle Scholar
  42. 42.
    Miller, N. D., and D. F. Williams. The in vivo and in vitro degradation of poly(glycolic acid) suture material as a function of applied strain. Biomaterials 5:365–368, 1984.CrossRefGoogle Scholar
  43. 43.
    Nuutinen, J. P., C. Clerc, R. Reinikainen, et al. Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. J. Biomater. Sci. Polym. Ed. 14:255–266, 2003.CrossRefGoogle Scholar
  44. 44.
    Nuutinen, J. P., C. Clerc, and P. Tormala. Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents. J. Biomater. Sci. Polym. Ed. 14:677–687, 2003.CrossRefGoogle Scholar
  45. 45.
    Ormiston, J. A., P. W. Serruys, E. Regar, et al. A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (absorb): a prospective open-label trial. Lancet 371:899–907, 2008.CrossRefGoogle Scholar
  46. 46.
    Ormiston, J. A., M. W. Webster, and G. Armstrong. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the Bvs poly-l-lactic acid everolimus-eluting coronary stent. Catheter. Cardiovasc. Interv. 69:128–131, 2007.CrossRefGoogle Scholar
  47. 47.
    Palminteri, E. Stents and urethral strictures: A lesson learned? Eur. Urol. 54:498–500, 2008.CrossRefGoogle Scholar
  48. 48.
    Peuster, M., C. Hesse, T. Schloo, et al. Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials 27:4955–4962, 2006.CrossRefGoogle Scholar
  49. 49.
    Peuster, M., P. Wohlsein, M. Brugmann, et al. A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart 86:563–569, 2001.CrossRefGoogle Scholar
  50. 50.
    Pietrzak, W. S., M. L. Verstynen, and D. R. Sarver. Bioabsorbable fixation devices: status for the craniomaxillofacial surgeon. J. Craniofac. Surg. 8:92–96, 1997.CrossRefGoogle Scholar
  51. 51.
    Piskin, E., A. Tuncel, A. Denizli, et al. Nondegradable and biodegradable polymeric particles—preparation and some selected biomedical applications. In: Diagnostic Biosensor Polymers, edited by A. M. Usmani, et al. Washington: American Chemical Society, 1994, pp. 222–237.CrossRefGoogle Scholar
  52. 52.
    Pistner, H., D. R. Bendix, J. Muhling, et al. Poly(l-lactide)—a long-term degradation study in vivo. 3. Analytical characterization. Biomaterials 14:291–298, 1993.CrossRefGoogle Scholar
  53. 53.
    Rajasubramanian, G., R. S. Meidell, C. Landau, et al. Fabrication of resorbable microporous intravascular stents for gene therapy applications. ASAIO J. 40:M584–M589, 1994.CrossRefGoogle Scholar
  54. 54.
    Ramcharitar, S., and P. W. Serruys. Fully biodegradable coronary stents: progress to date. Am. J. Cardiovasc. Drugs 8:305–314, 2008.CrossRefGoogle Scholar
  55. 55.
    Serruys, P. W., J. A. Ormiston, Y. Onuma, et al. A bioabsorbable everolimus-eluting coronary stent system (absorb): 2-year outcomes and results from multiple imaging methods. Lancet 373:897–910, 2009.CrossRefGoogle Scholar
  56. 56.
    Soares, J. S. Constitutive modeling of biodegradable polymers for application in endovascular stents. PhD Dissertation. College Station, TX: Texas A&M University, 2008.Google Scholar
  57. 57.
    Soares, J. S. Diffusion of a fluid through a spherical elastic solid undergoing large deformations. Int. J. Eng. Sci. 47:50–63, 2009.CrossRefMathSciNetGoogle Scholar
  58. 58.
    Soares, J. S., J. E. Moore, Jr., and K. R. Rajagopal. Theoretical modeling of cyclically loaded biodegradable cylinders. In: Modeling Biological Materials, edited by F. Mollica, et al. Boston: Birkhauser, 2007, pp. 125–177.CrossRefGoogle Scholar
  59. 59.
    Soares, J. S., J. E. Moore, and K. R. Rajagopal. Constitutive framework for biodegradable polymers with applications to biodegradable stents. ASAIO J. 54:295–301, 2008.CrossRefGoogle Scholar
  60. 60.
    Soares, J. S., J. E. Moore, and K. R. Rajagopal. Modeling of deformation-accelerated breakdown of polylactic acid biodegradable stents (submitted).Google Scholar
  61. 61.
    Soares, J. S., K. R. Rajagopal, and J. E. Moore. Deformation-induced hydrolysis of a degradable polymeric cylindrical annulus. Biomech. Model. Mechanobiol. (in press).Google Scholar
  62. 62.
    Soares, J. S., and P. Zunino. A mixture model for water uptake, degradation, erosion, and drug release from polydisperse polymeric networks. Biomaterials 31:3032–3042, 2010.CrossRefGoogle Scholar
  63. 63.
    Stack, R. S., R. M. Califf, H. R. Phillips, et al. Interventional cardiac catheterization at duke medical center. Am. J. Cardiol. 62:3F–24F, 1988.CrossRefGoogle Scholar
  64. 64.
    Stone, G. W., S. G. Ellis, D. A. Cox, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N. Engl. J. Med. 350:221–231, 2004.CrossRefGoogle Scholar
  65. 65.
    Su, S. H., R. Y. Chao, C. L. Landau, et al. Expandable bioresorbable endovascular stent. I. Fabrication and properties. Ann. Biomed. Eng. 31:667–677, 2003.CrossRefGoogle Scholar
  66. 66.
    Suggs, L. J., R. S. Krishnan, C. A. Garcia, et al. In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. J. Biomed. Mater. Res. 42:312–320, 1998.CrossRefGoogle Scholar
  67. 67.
    Tamada, J. A., and R. Langer. Erosion kinetics of hydrolytically degradable polymers. Proc. Natl. Acad. Sci. USA 90:552–556, 1993.CrossRefGoogle Scholar
  68. 68.
    Tamai, H., K. Igaki, E. Kyo, et al. Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation 102:399–404, 2000.Google Scholar
  69. 69.
    Tamai, H., K. Igaki, T. Tsuji, et al. A biodegradable poly-l-lactic acid coronary stent in the porcine coronary artery. J. Interv. Cardiol. 12:443–449, 1999.CrossRefGoogle Scholar
  70. 70.
    Tammela, T. L., and M. Talja. Biodegradable urethral stents. BJU Int. 92:843–850, 2003.CrossRefGoogle Scholar
  71. 71.
    Tanguay, J. F., J. P. Zidar, H. R. Phillips, 3rd, et al. Current status of biodegradable stents. Cardiol. Clin. 12:699–713, 1994.Google Scholar
  72. 72.
    Tsuji, T., H. Tamai, K. Igaki, et al. Biodegradable stents as a platform to drug loading. Int. J. Cardiovasc. Intervent. 5:13–16, 2003.Google Scholar
  73. 73.
    Uurto, I., A. Kotsar, T. Isotalo, et al. Tissue biocompatibility of new biodegradable drug-eluting stent materials. J. Mater. Sci. Mater. Med. 18:1543–1547, 2007.CrossRefGoogle Scholar
  74. 74.
    Waksman, R., R. Erbel, C. Di Mario, et al. Early- and long-term intravascular ultrasound and angiographic findings after bioabsorbable magnesium stent implantation in human coronary arteries. JACC Cardiovasc. Interv. 2:312–320, 2009.CrossRefGoogle Scholar
  75. 75.
    Weir, N. A., F. J. Buchanan, J. F. Orr, et al. Degradation of poly-l-lactide: part 1: in vitro and in vivo physiological temperature degradation. P. I. Mech. Eng. H 218:307–319, 2004.CrossRefGoogle Scholar
  76. 76.
    Weir, N. A., F. J. Buchanan, J. F. Orr, et al. Degradation of poly-l-lactide: part 2: increased temperature accelerated degradation. P. I. Mech. Eng. H 218:321–330, 2004.CrossRefGoogle Scholar
  77. 77.
    Welch, T., R. C. Eberhart, and C. J. Chuong. Characterizing the expansive deformation of a bioresorbable polymer fiber stent. Ann. Biomed. Eng. 36:742–751, 2008.CrossRefGoogle Scholar
  78. 78.
    Wiggins, M. J., J. M. Anderson, and A. Hiltner. Effect of strain and strain rate on fatigue-accelerated biodegradation of polyurethane. J. Biomed. Mater. Res. A 66A:463–475, 2003.CrossRefGoogle Scholar
  79. 79.
    Wiggins, M. J., J. M. Anderson, and A. Hiltner. Biodegradation of polyurethane under fatigue loading. J. Biomed. Mater. Res. A 65A:524–535, 2003.CrossRefGoogle Scholar
  80. 80.
    Wiggins, M. J., M. MacEwan, J. M. Anderson, et al. Effect of soft-segment chemistry on polyurethane biostability during in vitro fatigue loading. J. Biomed. Mater. Res. A 68A:668–683, 2004.CrossRefGoogle Scholar
  81. 81.
    Wu, X. S., and N. Wang. Characterization, biodegradation, and drug delivery application of biodegradable lactic/glycolic acid polymers. Part II: biodegradation. J. Biomater. Sci. Polym. Ed. 12:21–34, 2001.CrossRefGoogle Scholar
  82. 82.
    Ye, Y. W., C. Landau, J. E. Willard, et al. Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall. Ann. Biomed. Eng. 26:398–408, 1998.CrossRefGoogle Scholar
  83. 83.
    Zhang, Y., S. Zale, L. Sawyer, et al. Effects of metal salts on poly(Dl-lactide-co-glycolide) polymer hydrolysis. J. Biomed. Mater. Res. 34:531–538, 1997.CrossRefGoogle Scholar
  84. 84.
    Zhong, S. P., P. J. Doherty, and D. F. Williams. The effect of applied strain on the degradation of absorbable suture in vitro. Clin. Mater. 14:183–189, 1993.CrossRefGoogle Scholar
  85. 85.
    Zilberman, M., K. D. Nelson, and R. C. Eberhart. Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J. Biomed. Mater. Res. B 74:792–799, 2005.Google Scholar
  86. 86.
    Zilberman, M., N. D. Schwade, and R. C. Eberhart. Protein-loaded bioresorbable fibers and expandable stents: mechanical properties and protein release. J. Biomed. Mater. Res. B 69:1–10, 2004.CrossRefGoogle Scholar

Copyright information

© Biomedical Engineering Society 2010

Authors and Affiliations

  • James E. MooreJr.
    • 1
    Email author
  • Joao S. Soares
    • 2
    • 3
  • Kumbakonam R. Rajagopal
    • 4
  1. 1.Department of Biomedical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.Department of MathematicsCenter for Mathematics and its Applications (CEMAT), Instituto Superior TécnicoLisbonPortugal
  3. 3.Department of MathematicsModeling and Scientific Computing (MOX), Politecnico di MilanoMilanoItaly
  4. 4.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations