Protein & Cell

, Volume 4, Issue 12, pp 901–903 | Cite as

Role of the blood-brain barrier in rabies virus infection and protection

  • Lihua Wang
  • Yuxi Cao
  • Qing Tang
  • Guodong LiangEmail author
Perspective Protein & Cell


Rabies is an acute, progressive encephalitis caused by infection with rabies virus (RABV). It is one of the most important zoonotic infections and causes more than 70,000 human deaths annually ( It has long been held that a rabies infection is lethal in humans once the causative RABV reaches the central nervous system (CNS); however, this concept was challenged by the recent recovery of a small number of rabies patients. An analysis of these patients revealed that the bloodbrain barrier (BBB) played a major role in protection against the virus. The main reason for the survival of these patients was enhanced BBB permeability after infection with the causative agent (usually bat-originated RABV showing reduced pathogenicity), which allowed immune cells to enter the tissues of the CNS and clear the infection (Willoughby et al., 2005). These findings have been confirmed in animal infection experiments (Wang et al., 2005; Roy and Hooper, 2007, 2008; Faber et al., 2009). Thus, the BBB has attracted the attention of scientists interested in the pathogenesis of, and therapeutic approaches, for rabies. This paper introduces the role of the BBB in rabies infections and protection of the CNS and provides insight into future treatments for patients with clinical rabies.


Rabies Rabies Virus Central Nervous System Tissue Rabies Virus Infection Rabies Infection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Cai, L., Tao, X., Liu, Y., Zhang, H., Gao, L., et al. (2011). Biomed Environ Sci 24, 431–437.Google Scholar
  2. Centers for Disease Control Prevention. (2012). MMWR Morb Mortal Wkly Rep 61, 61–65.Google Scholar
  3. Faber, M., Li, J., Kean, R.B., Hooper, D.C., Alugupalli, K.R., et al. (2009). Proc Natl Acad Sci USA 106, 11300–11305.CrossRefGoogle Scholar
  4. Fabis, M.J., Phares, T.W., Kean, R.B., Koprowski, H., Hooper, D.C. (2008). Proc Natl Acad Sci U S A 105, 15511–15516.CrossRefGoogle Scholar
  5. Galea, I., Bernardes-Silva, M., Forse, P.A., van Rooijen, N., Liblau, R.S., et al. (2007). J Exp Med 204, 2023–2030.CrossRefGoogle Scholar
  6. Hemachudha, T., Ugolini, G., Wacharapluesadee, S., Sungkarat, W., Shuangshoti, S., et al. (2013). Lancet Neurol 12, 498–513.CrossRefGoogle Scholar
  7. Jackson, A.C. (2005). N Engl J Med 352, 2549–2550.CrossRefGoogle Scholar
  8. Jackson, A.C. (2009). Biomedica 29, 169–176.CrossRefGoogle Scholar
  9. Kuang, Y., Lackay, S.N., Zhao, L., and Fu, Z.F. (2009). Virus Res 144, 18–26.CrossRefGoogle Scholar
  10. Laothamatas, J., Hemachuda, T., Mitrabhajdi, E., Wannakrairot, P., and Tulayadaechonont, S. (2003). AJNR Am J Neuroradiol 24, 1102–1109.Google Scholar
  11. Li, J., Ertel, A., Portocarrero, C., Barkhouse, D.A., Dietzschold, B., et al. (2012). J Virol 86, 3200–3210.CrossRefGoogle Scholar
  12. Liu, M. T., Keirstead, H. S., and Lane, T. E. (2001). J Immunol 167, 4091–4097.CrossRefGoogle Scholar
  13. Lv, X.J., Ma, X.J., Wang, L.H., Li, H., Shen, X.X., et al. (2012). Biomed Environ Sci 25, 98–103.Google Scholar
  14. Man, S.M., Ma, Y.R., Shang, D.S., Zhao, W.D., Li, B., et al. (2007). Neurobiol Aging 28, 485–496.CrossRefGoogle Scholar
  15. Mucke, L., and Eddleston, M. (1993). FASEB J 7,1226–1232.Google Scholar
  16. Pachter, J. S., de Vries, H. E., and Fabry, Z. (2003). J Neuropathol Exp Neurol 62, 593–604.Google Scholar
  17. Phares, T.W., Fabis, M.J., Brimer, C.M., Kean, R.B., and Hooper, D.C. (2007). J Immunol 178, 7334–7343.CrossRefGoogle Scholar
  18. Phares, T.W., Kean, R.B., Mikheeva, T., and Hooper, D.C. (2006). J Immunol 176, 7666–7675.CrossRefGoogle Scholar
  19. Roy, A., and Hooper, D.C. (2007). J Virol 81, 7993–7998.CrossRefGoogle Scholar
  20. Roy, A., and Hooper, D.C. (2008). J Neurovirol 14, 401–411.CrossRefGoogle Scholar
  21. Sarmento, L., Li, X. Q., Howerth, E., Jackson, A. C., and Fu, Z. F. (2005). J Neurovirol 11, 571–581.CrossRefGoogle Scholar
  22. Stamatovic, S.M., Keep R.F., Kunkel S.L., and Andjelkovic, A.V. (2003). J Cell Sci 116, 4615–4628.CrossRefGoogle Scholar
  23. Tanabe, S., Heesen, M., Yoshizawa, I., Berman, M.A., Luo, Y. et al. (1997). J Immunol 159,905–911.Google Scholar
  24. Wang, Z.W., Sarmento, L., Wang, Y., Li, X.Q., Dhingra, V., et al. (2005). J Virol 79, 12554–12565.CrossRefGoogle Scholar
  25. Wen, Y., Wang, H., Wu, H., Yang, F., Tripp, R.A., et al. (2011). J Virol 85, 1634–1644.CrossRefGoogle Scholar
  26. Willoughby, R.E., Tieves, K.S., Hoffman, G.M., and Ghanayem, N.S. (2005). N Engl J Med 352, 2508–2514.CrossRefGoogle Scholar
  27. Wu, X., Franka, R., Henderson, H., and Rupprecht, C.E. (2011). Vaccine, 29, 4195–4201.CrossRefGoogle Scholar
  28. Yin, W., Dong, J., Tu, C., Edwards, J., Guo, F., et al. (2013). Infect Dis Poverty 2, 23.CrossRefGoogle Scholar
  29. Zhao, L., Toriumi, H., Wang, H., Kuang, Y., Guo, X., et al. (2010). J Virol 84, 9642–9648.CrossRefGoogle Scholar
  30. Zhu, W.Y., and Liang, G.D. (2012). Biomed Environ Sci 25, 602–605.Google Scholar
  31. Zlotnik, A., and Yoshie, O. (2000). Immunity 12, 121–127.CrossRefGoogle Scholar
  32. Zozulya, A.L., Reinke, E., Baiu, D.C., Karman, J., Sandor, M., et al. (2007). J Immunol 178, 520–529.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Lihua Wang
    • 1
  • Yuxi Cao
    • 1
  • Qing Tang
    • 1
  • Guodong Liang
    • 1
    Email author
  1. 1.State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Viral Disease Control and PreventionChinese Center for Disease Control and PreventionBeijingChina

Personalised recommendations