Protein & Cell

, Volume 4, Issue 9, pp 664–676 | Cite as

Romance of the three domains: how cladistics transformed the classification of cellular organisms

  • Chi-Chun Ho
  • Susanna K. P. LauEmail author
  • Patrick C. Y. WooEmail author
Review Protein & Cell


Cladistics is a biological philosophy that uses genealogical relationship among species and an inferred sequence of divergence as the basis of classification. This review critically surveys the chronological development of biological classification from Aristotle through our postgenomic era with a central focus on cladistics. In 1957, Julian Huxley coined cladogenesis to denote splitting from subspeciation. In 1960, the English translation of Willi Hennig’s 1950 work, Systematic Phylogenetics, was published, which received strong opposition from pheneticists, such as numerical taxonomists Peter Sneath and Robert Sokal, and evolutionary taxonomist, Ernst Mayr, and sparked acrimonious debates in 1960–1980. In 1977–1990, Carl Woese pioneered in using small subunit rRNA gene sequences to delimitate the three domains of cellular life and established major prokaryotic phyla. Cladistics has since dominated taxonomy. Despite being compatible with modern microbiological observations, i.e. organisms with unusual phenotypes, restricted expression of characteristics and occasionally being uncultivable, increasing recognition of pervasiveness and abundance of horizontal gene transfer has challenged relevance and validity of cladistics. The mosaic nature of eukaryotic and prokaryotic genomes was also gradually discovered. In the mid-2000s, high-throughput and whole-genome sequencing became routine and complex geneologies of organisms have led to the proposal of a reticulated web of life. While genomics only indirectly leads to understanding of functional adaptations to ecological niches, computational modeling of entire organisms is underway and the gap between genomics and phenetics may soon be bridged. Controversies are not expected to settle as taxonomic classifications shall remain subjective to serve the human scientist, not the classified.


cladistics phenetics phylogeny classification evolution 


  1. (161 1). THE HOLY BIBLE, Conteyning the Old Testament, AND THE NEW: Newly Translated out of the Originall tongues: & with the former Translations diligently compared and revised, by his Majesties speciall Comandement. Appointed to be read in Churches. (London, Robert Barker).Google Scholar
  2. Abby, S.S., Tannier, E., Gouy, M., and Daubin, V. (2010). Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests. BMC Bioinformatics 11, 324.Google Scholar
  3. Abby, S.S., Tannier, E., Gouy, M., and Daubin, V. (2012). Lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci U S A 109, 4962–4967.Google Scholar
  4. Achenbach-Richter, L., Gupta, R., Zillig, W., and Woese, C.R. (1988). Rooting the archaebacterial tree: the pivotal role of Thermococcus celer in archaebacterial evolution. Syst Appl Microbiol 10, 231–240.Google Scholar
  5. Adl, S.M., Leander, B.S., Simpson, A.G., Archibald, J.M., Anderson, O.R., Bass, D., Bowser, S.S., Brugerolle, G., Farmer, M.A., Karpov, S., et al. (2007). Diversity, nomenclature, and taxonomy of protists. Syst Biol 56, 684–689.Google Scholar
  6. Ashlock, P.D. (1974). The uses of cladistics. Annu Rev Ecol Systemat 5, 81–99.Google Scholar
  7. Avise, J.C. (1974). Systematic value of electrophoretic data. Syst Biol 23, 465–481.Google Scholar
  8. Balch, W.E., Magrum, L.J., Fox, G.E., Wolfe, R.S., and Woese, C.R. (1977). An ancient divergence among the bacteria. J Mol Evol 9, 305–311.Google Scholar
  9. Baldauf, S.L., Palmer, J.D., and Doolittle, W.F. (1996). The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc Natl Acad Sci U S A 93, 7749–7754.Google Scholar
  10. Bapteste, E., and Brochier, C. (2004). On the conceptual difficulties in rooting the tree of life. Trends Microbiol 12, 9–13.Google Scholar
  11. Bapteste, E., and Walsh, D.A. (2005). Does the ‘Ring of Life’ ring true? Trends Microbiol 13, 256–261.Google Scholar
  12. Boyden, A. (1947). Homology and analogy. a critical review of the meanings and implications of these concepts in biology. Amer Mid Natur 37, 648–669.Google Scholar
  13. Branfield, P. and Potter, S. (2009). Edexcel IGCSE biology (Harlow, Pearson).Google Scholar
  14. Brenner, D., Staley, J., and Krieg, N. (2005). Classification of prokaryotic organisms and the concept of bacterial speciation. In Bergey’s manual of systematic bacteriology, Brenner, D., Krieg, N., Staley, J., and Garrity, G. eds. (Springer US), pp. 27–32.Google Scholar
  15. Bridge, P.D., and Sneath, P.H. (1983). Numerical taxonomy of Streptococcus. J Gen Microbiol 129, 565–597.Google Scholar
  16. Broom, A., and Sneath, P.H. (1981). Numerical taxonomy of Haemophilus. J Gen Microbiol 126, 123–149.Google Scholar
  17. Brown, J.R., and Doolittle, W.F. (1995). Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci U S A 92, 2441–2445.Google Scholar
  18. Brundin, L. (1966). Transantarctic relationships and their significance, as evidenced by chironomid midges. With a monograph of the subfamilies Podonominae and Aphroteniinae and the austral Heptagyiae (Stockholm, Almqvist & Wiksell).Google Scholar
  19. Burggraf, S., Fricke, H., Neuner, A., Kristjansson, J., Rouvier, P., Mandelco, L., Woese, C.R., and Stetter, K.O. (1990). Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system. Syst Appl Microbiol 13, 263–269.Google Scholar
  20. Burkholder, J.M., and Glasgow, H.B., Jr. (1997). Trophic controls on stage transformations of a toxic ambush-predator dinoflagellate. J Eukaryot Microbiol 44, 200–205.Google Scholar
  21. Caetano-Anolles, G. (2002). Evolved RNA secondary structure and the rooting of the universal tree of life. J Mol Evol 54, 333–345.Google Scholar
  22. Cammarano, P., Palm, P., Creti, R., Ceccarelli, E., Sanangelantoni, A.M., and Tiboni, O. (1992). Early evolutionary relationships among known life forms inferred from elongation factor EF-2/EF-G sequences: phylogenetic coherence and structure of the archaeal domain. J Mol Evol 34, 396–405.Google Scholar
  23. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17, 540–552.Google Scholar
  24. Cavalier-Smith, T. (2004). Only six kingdoms of life. Proc Biol Sci 271, 1251–1262.Google Scholar
  25. Chan, J.F., Lau, S.K., Curreem, S.O., To, K.K., Leung, S.S., Cheng, V.C., Yuen, K.Y., and Woo, P.C. (2012). First report of spontaneous intrapartum Atopobium vaginae bacteremia. J Clin Microbiol 50, 2525–2528.Google Scholar
  26. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al. (2009). The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–145.Google Scholar
  27. Colwell, R.R. (1970). Polyphasic taxonomy of the genus vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. J Bacteriol 104, 410–433.Google Scholar
  28. Dagan, T., Roettger, M., Bryant, D., and Martin, W. (2010). Genome networks root the tree of life between prokaryotic domains. Genome Biol Evol 2, 379–392.Google Scholar
  29. Darwin, C. (1859). On the origin of species by means of natural selection (London, J. Murray).Google Scholar
  30. Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R.A., Martinez-Arias, R., Henne, A., Wiezer, A., Baumer, S., Jacobi, C., et al. (2002). The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4, 453–461.Google Scholar
  31. DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72, 5069–5072.Google Scholar
  32. Doolittle, W.F., and Brown, J.R. (1994). Tempo, mode, the progenote, and the universal root. Proc Natl Acad Sci U S A 91, 6721–6728.Google Scholar
  33. Edgar, R., Asimenos, G., Batzoglou, S., and Sidow, A. (2013). Evolver: a whole-genome sequence evolution simulator.Google Scholar
  34. Federhen, S. (2012). The NCBI Taxonomy database. Nucleic Acids Res 40, D136–143.Google Scholar
  35. Field, K.G., Olsen, G.J., Lane, D.J., Giovannoni, S.J., Ghiselin, M.T., Raff, E.C., Pace, N.R., and Raff, R.A. (1988). Molecular phylogeny of the animal kingdom. Science 239, 748–753.Google Scholar
  36. Forterre, P., and Philippe, H. (1999). Where is the root of the universal tree of life? Bioessays 21, 871–879.Google Scholar
  37. Fournier, G.P., and Gogarten, J.P. (2010). Rooting the ribosomal tree of life. Mol Biol Evol 27, 1792–1801.Google Scholar
  38. Fox, G.E., Magrum, L.J., Balch, W.E., Wolfe, R.S., and Woese, C.R. (1977). Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci U S A 74, 4537–4541.Google Scholar
  39. Golding, G.B., and Gupta, R.S. (1995). Protein-based phylogenies support a chimeric origin for the eukaryotic genome. Mol Biol Evol 12, 1–6.Google Scholar
  40. Graur, D., and Li, W.-H. (2000). Fundamentals of molecular evolution, 2nd edn (Sunderland, Massachusetts, USA., Sinauer Associates).Google Scholar
  41. Gribaldo, S., and Cammarano, P. (1998). The root of the universal tree of life inferred from anciently duplicated genes encoding components of the protein-targeting machinery. J Mol Evol 47, 508–516.Google Scholar
  42. Gribaldo, S., and Philippe, H. (2002). Ancient phylogenetic relationships. Theor Popul Biol 61, 391–408.Google Scholar
  43. Gupta, R., Lanter, J.M., and Woese, C.R. (1983). Sequence of the 16S ribosomal RNA from Halobacterium volcanii, an archaebacterium. Science 221, 656–659.Google Scholar
  44. Gupta, R.S. (1998). Protein phylogenies and signature sequences: A reappraisal of evolutionary relationships among archaebacteria, eubacteria, and eukaryotes. Microbiol Mol Biol Rev 62, 1435–1491.Google Scholar
  45. Hallam, S.J., Konstantinidis, K.T., Putnam, N., Schleper, C., Watanabe, Y., Sugahara, J., Preston, C., de la Torre, J., Richardson, P.M., and DeLong, E.F. (2006). Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A 103, 18296–18301.Google Scholar
  46. Hennig, W. (1950). Grundzüge einer Theorie der phylogenetischen Systematik (Berlin, Deutscher zentralverlag).Google Scholar
  47. Hennig, W. (1965). Phylogenetic Systematics. Annu Rev Entomol 10, 97–116.Google Scholar
  48. Hennig, W. (1966). Phylogenetic systematics (Urbana, University of Illinois Press).Google Scholar
  49. Ho, C.C., Wu, A.K., Tse, C.W., Yuen, K.Y., Lau, S.K., and Woo, P.C. (2012). Automated pangenomic analysis in target selection for PCR detection and identification of bacteria by use of ssGeneFinder Webserver and its application to Salmonella enterica serovar Typhi. J Clin Microbiol 50, 1905–1911.Google Scholar
  50. Ho, C.C., Yuen, K.Y., Lau, S.K., and Woo, P.C. (2011). Rapid identification and validation of specific molecular targets for detection of Escherichia coli O104:H4 outbreak strain by use of high-throughput sequencing data from nine genomes. J Clin Microbiol 49, 3714–3716.Google Scholar
  51. Hongoh, Y., Sharma, V.K., Prakash, T., Noda, S., Taylor, T.D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M., and Ohkuma, M. (2008a). Complete genome of the uncultured Termite Group 1 bacteria in a single host protist cell. Proc Natl Acad Sci U S A 105, 5555–5560.Google Scholar
  52. Hongoh, Y., Sharma, V.K., Prakash, T., Noda, S., Toh, H., Taylor, T.D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M., et al. (2008b). Genome of an endosymbiont coupling N2 fixation to cellulolysis within protest cells in termite gut. Science 322, 1108–1109.Google Scholar
  53. Hubbs, C.L. (1944). Concepts of homology and analogy. Amer Nat 78, 289–307.Google Scholar
  54. Huxley, J. (1957). The three types of evolutionary process. Nature 180, 454–455.Google Scholar
  55. Huxley, J. (1959). Clades and grades. in function and taxonomic importance: a symposium. Cain, A.J. ed. (London, Systematics Association).Google Scholar
  56. Hyer, B.H., McCarthy, B.J., and Bolton, E.T. (1964). A molecular approach in the systematics of higher organisms. dna interactions provide a basis for detecting common polynucleotide sequences among diverse organisms. Science 144, 959–967.Google Scholar
  57. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S., and Miyata, T. (1989). Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc Natl Acad Sci U S A 86, 9355–9359.Google Scholar
  58. Johnson, M.L., and Wicks, M.J. (1959). Serum Protein Electrophoresis in Mammals-Taxonomic Implications. Syst Biol 8, 88–95.Google Scholar
  59. Jones, J.H., Card, W., Chapman, M., Lennard-Jones, J.E., Morson, B.C., Sackin, M.J., and Sneath, P.H. (1970). The application of numerical taxonomy to the separation of cllonic inflammatory disease. Gut 11, 1062.Google Scholar
  60. Jones, J.H., Lennard-Jones, J.E., Morson, B.C., Chapman, M., Sackin, M.J., Sneath, P.H., Spicer, C.C., and Card, W.I. (1973). Numerical taxonomy and discriminant analysis applied to non-specific colitis. Q J Med 42, 715–732.Google Scholar
  61. Karr, J.R., Sanghvi, J.C., Macklin, D.N., Gutschow, M.V., Jacobs, J.M., Bolival, B., Jr., Assad-Garcia, N., Glass, J.I., and Covert, M.W. (2012). A whole-cell computational model predicts phenotype from genotype. Cell 150, 389–401.Google Scholar
  62. Keeling, P.J., Burger, G., Durnford, D.G., Lang, B.F., Lee, R.W., Pearlman, R.E., Roger, A.J., and Gray, M.W. (2005). The tree of eukary otes. Trends Ecol Evol 20, 670–676.Google Scholar
  63. Kennedy, S.P., Ng, W.V., Salzberg, S.L., Hood, L., and DasSarma, S. (2001). Understanding the adaptation of Halobacterium species NRC-1 to its extreme environment through computational analysis of its genome sequence. Genome Res 11, 1641–1650.Google Scholar
  64. Koonin, E.V., and Wolf, Y.I. (2008). Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res 36, 6688–6719.Google Scholar
  65. Kunin, V., Goldovsky, L., Darzentas, N., and Ouzounis, C.A. (2005). The net of life: reconstructing the microbial phylogenetic network. Genome Res 15, 954–959.Google Scholar
  66. Lake, J.A., and Rivera, M.C. (2004). Deriving the genomic tree of life in the presence of horizontal gene transfer: conditioned reconstruction. Mol Biol Evol 21, 681–690.Google Scholar
  67. Lake, J.A., Servin, J.A., Herbold, C.W., and Skophammer, R.G. (2008). Evidence for a new root of the tree of life. Syst Biol 57, 835–843.Google Scholar
  68. Lake, J.A., Skophammer, R.G., Herbold, C.W., and Servin, J.A. (2009). Genome beginnings: rooting the tree of life. Philos. Trans R Soc Lond B Biol Sci 364, 2177–2185.Google Scholar
  69. Lau, S.K., Curreem, S.O., Ngan, A.H., Yeung, C.K., Yuen, K.Y., and Woo, P.C. (2011a). First report of disseminated Mycobacterium skin infections in two liver transplant recipients and rapid diagnosis by hsp65 gene sequencing. J Clin Microbiol 49, 3733–3738.Google Scholar
  70. Lau, S.K., Lee, P., Tsang, A.K., Yip, C.C., Tse, H., Lee, R.A., So, L.Y., Lau, Y.L., Chan, K.H., Woo, P.C., et al. (2011b). Molecular epidemiology of human coronavirus OC43 reveals evolution of different genotypes over time and recent emergence of a novel genotype due to natural recombination. J Virol 85, 11325–11337.Google Scholar
  71. Lau, S.K., Li, K.S., Huang, Y., Shek, C.T., Tse, H., Wang, M., Choi, G.K., Xu, H., Lam, C.S., Guo, R., et al. (2010). Ecoepidemiology and complete genome comparison of different strains of severe acute respiratory syndrome-related Rhinolophus bat coronavirus in China reveal bats as a reservoir for acute, self-limiting infection that allows recombination events. J Virol 84, 2808–2819.Google Scholar
  72. Lau, S.K., Ng, K.H., Woo, P.C., Yip, K.T., Fung, A.M., Woo, G.K., Chan, K.M., Que, T.L., and Yuen, K.Y. (2006a). Usefulness of the Micro-Seq 500 16S rDNA bacterial identification system for identification of anaerobic Gram positive bacilli isolated from blood cultures. J Clin Pathol 59, 219–222.Google Scholar
  73. Lau, S.K., Woo, P.C., Chan, C.Y., Woo, W.L., Woo, G.K., and Yuen, K.Y. (2005). Typhoid fever associated with acute appendicitis caused by an H1-j strain of Salmonella enterica serotype Typhi. J Clin Microbiol 43, 1470–1472.Google Scholar
  74. Lau, S.K., Woo, P.C., Luk, W.K., Fung, A.M., Hui, W.T., Fong, A.H., Chow, C.W., Wong, S.S., and Yuen, K.Y. (2006b). Clinical isolates of Streptococcus iniae from Asia are more mucoid and beta-hemolytic than those from North America. Diagn Microbiol Infect Dis 54, 177–181.Google Scholar
  75. Lau, S.K., Woo, P.C., Yip, C.C., Li, K.S., Fu, C.T., Huang, Y., Chan, K.H., and Yuen, K.Y. (2011c). Co-existence of multiple strains of two novel porcine bocaviruses in the same pig, a previously undescribed phenomenon in members of the family Parvoviridae, and evidence for inter- and intra-host genetic diversity and recombination. J Gen Virol 92, 2047–2059.Google Scholar
  76. Lawson, F.S., Charlebois, R.L., and Dillon, J.A. (1996). Phylogenetic analysis of carbamoylphosphate synthetase genes: complex evolutionary history includes an internal duplication within a gene which can root the tree of life. Mol Biol Evol 13, 970–977.Google Scholar
  77. Li, W.H., and Tanimura, M. (1987). The molecular clock runs more slowly in man than in apes and monkeys. Nature 326, 93–96.Google Scholar
  78. Linnaeus, C. (1751). Philosophia botanica. Lopez, P., Forterre, P., and Philippe, H. (1999). The root of the tree of life in the light of the covarion model. J Mol Evol 49, 496–508.Google Scholar
  79. Ludwig, W., and Klenk, H.-P. (2005). Overview: a phylogenetic backbone and taxonomic framework for procaryotic systematics. In Bergey’s manual of systematic bacteriology, Brenner, D., Krieg, N., Staley, J., and Garrity, G. eds. (Springer US), pp. 49–66.Google Scholar
  80. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., et al. (2004). ARB: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.Google Scholar
  81. Magrum, L.J., Luehrsen, K.R., and Woese, C.R. (1978). Are extreme halophiles actually “bacteria”? J Mol Evol 11, 1–8.Google Scholar
  82. Margoliash, E., Smith, E.L., Kreil, G., and Tuppy, H. (1961). Amino-acid sequence of horse heart cytochrome c. Nature 192, 1125–1127.Google Scholar
  83. Mayr, E. (1974). Cladistic analysis or cladistic classification. Zeitschrift für zoologische Systematik und Evolutionsforschung 12, 94–128.Google Scholar
  84. Mayr, E. (1981). Biological classification: toward a synthesis of opposing methodologies. Science 214, 510–516.Google Scholar
  85. McCarthy, B.J., and Bolton, E.T. (1963). An approach to the measurement of genetic relatedness among organisms. Proc Natl Acad Sci U S A 50, 156–164.Google Scholar
  86. McDade, L. (1990). Hybrids and phylogenetic systematics i. patterns of character expression in hybrids and their implications for cladistic analysis. Evolution 44, 1685–1700.Google Scholar
  87. McDade, L.A. (1992). Hybrids and phylogenetic systematics ii. the impact of hybrids on cladistic analysis. Evolution 46, 1329–1346.Google Scholar
  88. Medlin, L., Elwood, H.J., Stickel, S., and Sogin, M.L. (1988). The characterization of enzymatically amplified eukaryotic 16S-like rRNAcoding regions. Gene 71, 491–499.Google Scholar
  89. Myers, G.S. (1952). The nature of systematic biology and of a species description. Syst Zool 1, 106–111.Google Scholar
  90. Noller, H.F., and Woese, C.R. (1981). Secondary structure of 16S ribosomal RNA. Science 212, 403–411.Google Scholar
  91. Olsen, G.J., Overbeek, R., Larsen, N., Marsh, T.L., McCaughey, M.J., Maciukenas, M.A., Kuan, W.M., Macke, T.J., Xing, Y., and Woese, C.R. (1992). The ribosomal database project. Nucleic Acids Res 20Suppl, 2199–2200.Google Scholar
  92. Olsen, G.J., Pace, N.R., Nuell, M., Kaine, B.P., Gupta, R., and Woese, C.R. (1985). Sequence of the 16S rRNA gene from the thermoacidophilic archaebacterium Sulfolobus solfataricus and its evolutionary implications. J Mol Evol 22, 301–307.Google Scholar
  93. Oyaizu, H., Debrunner-Vossbrinck, B., Mandelco, L., Studier, J.A., and Woese, C.R. (1987). The green non-sulfur bacteria: A deep branching in the eubacterial line of descent. Syst Appl Microbiol 9, 47–53.Google Scholar
  94. Oyaizu, H., and Woese, C.R. (1985). Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria. Syst Appl Microbiol 6, 257–263.Google Scholar
  95. Page, R.D.M., and Holmes, E.C. (1998). Molecular evolution: a phylogenetic approach (Oxford; Malden, MA, Blackwell Science).Google Scholar
  96. Paster, B.J., Ludwig, W., Weisburg, W.G., Stackebrandt, E., Hespell, R.B., Hahn, C.M., Reichenbach, H., Stetter, K.O., and Woese, C.R. (1985). A phylogenetic grouping of the Bacteroides, Cytophagas, and certain Flavobacteria. Syst Appl Microbiol 6, 34–42.Google Scholar
  97. Paster, B.J., Stackebrandt, E., Hespell, R.B., Hahn, C.M., and Woese, C.R. (1984). The phylogeny of the spirochetes. Syst Appl Microbiol 5, 337–351.Google Scholar
  98. Philippe, H., and Forterre, P. (1999). The rooting of the universal tree of life is not reliable. J Mol Evol 49, 509–523.Google Scholar
  99. Posada, D., and Crandall, K.A. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends Ecol Evol 16, 37–45.Google Scholar
  100. Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O. (2007). SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35, 7188–7196.Google Scholar
  101. Puigbo, P., Wolf, Y.I., and Koonin, E.V. (2009). Search for a ‘Tree of Life’ in the thicket of the phylogenetic forest. J Biol 8, 59.Google Scholar
  102. Razin, S. (1997). Comparative genomics of mycoplasmas. Wien Klin Wochenschr 109, 551–556.Google Scholar
  103. Rensch, B. (1954). Neuere Probleme der Abstammungslehre: die transspezifische Evolution, 2., stark verä nderte Aufl. edn (Stuttgart, F. Enke).Google Scholar
  104. Ribeiro, S., and Golding, G.B. (1998). The mosaic nature of the eukaryotic nucleus. Mol Biol Evol 15, 779–788.Google Scholar
  105. Saccone, C., Gissi, C., Lanave, C., and Pesole, G. (1995). Molecular classification of living organisms. J Mol Evol 40, 273–279.Google Scholar
  106. Salichos, L., and Rokas, A. (2013). Inferring ancient divergences requires genes with strong phylogenetic signals. Nature 497, 327–331.Google Scholar
  107. Sanger, F., Donelson, J.E., Coulson, A.R., Kossel, H., and Fischer, D. (1973). Use of DNA polymerase I primed by a synthetic oligonucleotide to determine a nucleotide sequence in phage flDNA. Proc Natl Acad Sci U S A 70, 1209–1213.Google Scholar
  108. Sanger, F., Nicklen, S., and Coulson, A.R. (1977). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.Google Scholar
  109. Schliep, K., Lopez, P., Lapointe, F.J., and Bapteste, E. (2011). Harvesting evolutionary signals in a forest of prokaryotic gene trees. Mol Biol Evol 28, 1393–1405.Google Scholar
  110. Sicheritz-Ponten, T., and Andersson, S.G. (2001). A phylogenomic approach to microbial evolution. Nucleic Acids Res 29, 545–552.Google Scholar
  111. Simpson, A.G.B., and Roger, A.J. (2004). The real’ kingdoms’ of eukaryotes. Curr Biol 14, R693–R696.Google Scholar
  112. Sneath, P.H., and Sokal, R.R. (1962). Numerical taxonomy. Nature 193, 855–860.Google Scholar
  113. Sneath, P.H., Stevens, M., and Sackin, M.J. (1981). Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Antonie van Leeuwenhoek 47, 423–448.Google Scholar
  114. Sneath, P.H.A. (1995). Thirty years of numerical taxonomy. Syst Biol 44, 281–298.Google Scholar
  115. Sokal, R.R.S.P.H.A. (1963). Principles of numerical taxonomy (San Francisco, Freeman.).Google Scholar
  116. Sun, F.J., and Caetano-Anolles, G. (2009). The evolutionary history of the structure of 5S ribosomal RNA. J Mol Evol 69, 430–443.Google Scholar
  117. Talavera, G., and Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56, 564–577.Google Scholar
  118. Theißen, G. (2002). Orthology: secret life of genes. Nature 415, 741–741.Google Scholar
  119. Titsworth, E., Grunberg, E., Beskid, G., Cleeland, R., Jr., and Delorenzo, W.F. (1969). Efficiency of a multitest system (Enterotube) for rapid identification of Enterobacteriaceae. Appl Microbiol 18, 207–213.Google Scholar
  120. Tse, H., Tsang, A.K., Tsoi, H.W., Leung, A.S., Ho, C.C., Lau, S.K., Woo, P.C., and Yuen, K.Y. (2012). Identification of a novel bat papillomavirus by metagenomics. PLoS ONE 7, e43986.Google Scholar
  121. US National Library of Medicine (2006). Genetic Speciation.Google Scholar
  122. Valas, R.E., and Bourne, P.E. (2011). The origin of a derived superkingdom: how a gram-positive bacterium crossed the desert to become an archaeon. Biol Direct 6, 16.Google Scholar
  123. Washington, J.A., 2nd, Yu, P.K., and Martin, W.J. (1971). Evaluation of accuracy of multitest micromethod system for identification of Enterobacteriaceae. Appl Microbiol 22, 267–269.Google Scholar
  124. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. (1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.Google Scholar
  125. Weisburg, W.G., Giovannoni, S.J., and Woese, C.R. (1989). The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst Appl Microbiol 11, 128–134.Google Scholar
  126. Williams, D.M., and Ebach, M.C. (2009). What, exactly, is cladistics? Re-writing the history of systematics and biogeography. Acta Biotheor 57, 249–268.Google Scholar
  127. Woese, C.R. (1979). A proposal concerning the origin of life on the planet earth. J Mol Evol 13, 95–101.Google Scholar
  128. Woese, C.R. (2000). Interpreting the universal phylogenetic tree. Proc Natl Acad Sci U S A 97, 8392–8396.Google Scholar
  129. Woese, C.R., and Fox, G.E. (1977). Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 74, 5088–5090.Google Scholar
  130. Woese, C.R., Gupta, R., Hahn, C.M., Zillig, W., and Tu, J. (1984a). The phylogenetic relationships of three sulfur dependent archaebacteria. Syst Appl Microbiol 5, 97–105.Google Scholar
  131. Woese, C.R., Kandler, O., and Wheelis, M.L. (1990a). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87, 4576–4579.Google Scholar
  132. Woese, C.R., Magrum, L.J., and Fox, G.E. (1978). Archaebacteria. J Mol Evol 11, 245–251.Google Scholar
  133. Woese, C.R., Magrum, L.J., Gupta, R., Siegel, R.B., Stahl, D.A., Kop, J., Crawford, N., Brosius, J., Gutell, R., Hogan, J.J., et al. (1980a). Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. Nucleic Acids Res 8, 2275–2293.Google Scholar
  134. Woese, C.R., Maloy, S., Mandelco, L., and Raj, H.D. (1990b). Phylogenetic placement of the Spirosomaceae. Syst Appl Microbiol 13, 19–23.Google Scholar
  135. Woese, C.R., Mandelco, L., Yang, D., Gherna, R., and Madigan, M.T. (1990c). The case for relationship of the flavobacteria and their relatives to the green sulfur bacteria. Syst Appl Microbiol 13, 258–262.Google Scholar
  136. Woese, C.R., Maniloff, J., and Zablen, L.B. (1980b). Phylogenetic analysis of the mycoplasmas. Proc Natl Acad Sci U S A 77, 494–498.Google Scholar
  137. Woese, C.R., Stackebrandt, E., Weisburg, W.G., Paster, B.J., Madigan, M.T., Fowler, V.J., Hahn, C.M., Blanz, P., Gupta, R., Nealson, K.H., et al. (1984b). The phylogeny of purple bacteria: The alpha subdivision. Syst Appl Microbiol 5, 315–326.Google Scholar
  138. Woese, C.R., Weisburg, W.G., Hahn, C.M., Paster, B.J., Zablen, L.B., Lewis, B.J., Macke, T.J., Ludwig, W., and Stackebrandt, E. (1985). The phylogeny of purple bacteria: The gamma subdivision. Syst Appl Microbiol 6, 25–33.Google Scholar
  139. Woese, C.R., Yang, D., Mandelco, L., and Stetter, K.O. (1990d). The flexibacter-flavobacter connection. Syst Appl Microbiol 13, 161–165.Google Scholar
  140. Woo, P.C., Chong, K.T., Tse, H., Cai, J.J., Lau, C.C., Zhou, A.C., Lau, S.K., and Yuen, K.Y. (2006). Genomic and experimental evidence for a potential sexual cycle in the pathogenic thermal dimorphic fungus Penicillium marneffei. FEBS Lett 580, 3409–3416.Google Scholar
  141. Woo, P.C., Fung, A.M., Wong, S.S., Tsoi, H.W., and Yuen, K.Y. (2001a). Isolation and characterization of a Salmonella enterica serotype Typhi variant and its clinical and public health implications. J Clin Microbiol 39, 1190–1194.Google Scholar
  142. Woo, P.C., Lam, C.W., Tam, E.W., Leung, C.K., Wong, S.S., Lau, S.K., and Yuen, K.Y. (2012). First discovery of two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and implications in virulence of Penicillium marneffei. PLoS Negl Trop Dis 6, e1871.Google Scholar
  143. Woo, P.C., Lau, S.K., Huang, Y., and Yuen, K.Y. (2009). Coronavirus diversity, phylogeny and interspecies jumping. Exp Biol Med (Maywood) 234, 1117–1127.Google Scholar
  144. Woo, P.C., Lau, S.K., Teng, J.L., Tse, H., and Yuen, K.Y. (2008). Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories. Clin Microbiol Infect 14, 908–934.Google Scholar
  145. Woo, P.C., Lau, S.K., Woo, G.K., Fung, A.M., Ngan, A.H., Hui, W.T., and Yuen, K.Y. (2003a). Seronegative bacteremic melioidosis caused by Burkholderia pseudomallei with ambiguous biochemical profile: clinical importance of accurate identification by 16S rRNA gene and groEL gene sequencing. J Clin Microbiol 41, 3973–3977.Google Scholar
  146. Woo, P.C., Leung, P.K., Leung, K.W., and Yuen, K.Y. (2000). Identification by 16S ribosomal RNA gene sequencing of an Enterobacteriaceae species from a bone marrow transplant recipient. Mol Pathol 53, 211–215.Google Scholar
  147. Woo, P.C., Leung, P.K., Wong, S.S., Ho, P.L., and Yuen, K.Y. (2001b). groEL encodes a highly antigenic protein in Burkholderia pseudomallei. Clin Diagn Lab Immunol 8, 832–836.Google Scholar
  148. Woo, P.C., Ng, K.H., Lau, S.K., Yip, K.T., Fung, A.M., Leung, K.W., Tam, D.M., Que, T.L., and Yuen, K.Y. (2003b). Usefulness of the MicroSeq 500 16S ribosomal DNA-based bacterial identification system for identification of clinically significant bacterial isolates with ambiguous biochemical profiles. J Clin Microbiol 41, 1996–2001.Google Scholar
  149. Woo, P.C., Tam, E.W., Chong, K.T., Cai, J.J., Tung, E.T., Ngan, A.H., Lau, S.K., and Yuen, K.Y. (2010). High diversity of polyketide synthase genes and the melanin biosynthesis gene cluster in Penicillium marneffei. FEBS J. 277, 3750–3758.Google Scholar
  150. Woo, P.C., Teng, J.L., Yeung, J.M., Tse, H., Lau, S.K., and Yuen, K.Y. (2011). Automated identification of medically important bacteria by 16S rRNA gene sequencing using a novel comprehensive database, 16SpathDB. J Clin Microbiol 49, 1799–1809.Google Scholar
  151. Woo, P.C., Wong, S.S., Lum, P.N., Hui, W.T., and Yuen, K.Y. (2001c). Cell-wall-deficient bacteria and culture-negative febrile episodes in bone-marrow-transplant recipients. Lancet 357, 675–679.Google Scholar
  152. Woo, P.C., Zhen, H., Cai, J.J., Yu, J., Lau, S.K., Wang, J., Teng, J.L., Wong, S.S., Tse, R.H., Chen, R., et al. (2003c). The mitochondrial genome of the thermal dimorphic fungus Penicillium marneffei is more closely related to those of molds than yeasts. FEBS Lett 555, 469–477.Google Scholar
  153. Woolley, S.M., Posada, D., and Crandall, K.A. (2008). A comparison of phylogenetic network methods using computer simulation. PLoS ONE 3, e1913.Google Scholar
  154. Yang, D., Kaine, B.P., and Woese, C.R. (1985a). The phylogeny of Archaebacteria. Syst Appl Microbiol 6, 251–256.Google Scholar
  155. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G.J., and Woese, C.R. (1985b). Mitochondrial origins. Proc Natl Acad Sci U S A 82, 4443–4447.Google Scholar
  156. Yang, D., and Woese, C.R. (1989). Phylogenetic sructure of the “Leuconostocs”: an interesting case of a rapidly evolving organism. Syst Appl Microbiol 12, 145–149.Google Scholar
  157. Yang, Z., and Rannala, B. (2012). Molecular phylogenetics: principles and practice. Nat Rev Genet 13, 303–314.Google Scholar
  158. Yang, Z., and Roberts, D. (1995). On the use of nucleic acid sequences to infer early branchings in the tree of life. Mol Biol Evol 12, 451–458.Google Scholar
  159. Yip, C.C., Lau, S.K., Woo, P.C., Chan, K.H., and Yuen, K.Y. (2011). Complete genome sequence of a coxsackievirus A22 strain in Hong Kong reveals a natural intratypic recombination event. J Virol 85, 12098–12099.Google Scholar
  160. Zablen, L.B., Kissil, M.S., Woese, C.R., and Buetow, D.E. (1975). Phylogenetic origin of the chloroplast and prokaryotic nature of its ribosomal RNA. Proc Natl Acad Sci U S A 72, 2418–2422.Google Scholar
  161. Zuckerkandl, E., and Pauling, L. (1965). Molecules as documents of evolutionary history. J Theor Biol 8, 357–366.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MicrobiologyThe University of Hong KongHong KongChina
  2. 2.State Key Laboratory of Emerging Infectious DiseasesThe University of Hong KongHong KongChina
  3. 3.Research Centre of Infection and ImmunologyThe University of Hong KongHong KongChina
  4. 4.Carol Yu Centre of InfectionThe University of Hong KongHong KongChina

Personalised recommendations