Protein & Cell

, Volume 4, Issue 6, pp 403–414 | Cite as

The role of gut microbiota in the gut-brain axis: current challenges and perspectives

  • Xiao Chen
  • Roshan D’Souza
  • Seong-Tshool HongEmail author
Review Protein & Cell


Brain and the gastrointestinal (GI) tract are intimately connected to form a bidirectional neurohumoral communication system. The communication between gut and brain, knows as the gut-brain axis, is so well established that the functional status of gut is always related to the condition of brain. The researches on the gut-brain axis were traditionally focused on the psychological status affecting the function of the GI tract. However, recent evidences showed that gut microbiota communicates with the brain via the gut-brain axis to modulate brain development and behavioral phenotypes. These recent findings on the new role of gut microbiota in the gut-brain axis implicate that gut microbiota could associate with brain functions as well as neurological diseases via the gut-brain axis. To elucidate the role of gut microbiota in the gut-brain axis, precise identification of the composition of microbes constituting gut microbiota is an essential step. However, identification of microbes constituting gut microbiota has been the main technological challenge currently due to massive amount of intestinal microbes and the difficulties in culture of gut microbes. Current methods for identification of microbes constituting gut microbiota are dependent on omics analysis methods by using advanced high tech equipment. Here, we review the association of gut microbiota with the gut-brain axis, including the pros and cons of the current high throughput methods for identification of microbes constituting gut microbiota to elucidate the role of gut microbiota in the gut-brain axis.


gut microbiota the gut-brain axis central nervous system high throughput methods next-generation sequencings 


  1. Albesharat, R., Ehrmann, M.A., Korakli, M., Yazaji, S., and Vogel, R.F. (2011). Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and feces of mothers and their babies. Syst Appl Microbiol 34, 148–155.CrossRefGoogle Scholar
  2. Andrew, J.W. (2002). The gut-brain axis in childhood developmental disorders. J Pediatr Gastroenterol Nutr 34, S14–17.CrossRefGoogle Scholar
  3. Angelakis, E., Million, M., Henry, M., and Raoult, D. (2011). Rapid and accurate bacterial identification in probiotics and yoghurts by MALDI-TOF mass spectrometry. J Food Sci 76, M568–572.CrossRefGoogle Scholar
  4. Anhalt, J.P., and Fenselau, C. (1975). Identification of bacteria using mass spectrometry. Anal Chem 47, 219–225.CrossRefGoogle Scholar
  5. Barbara, G., Brummer, R.J., and Delzenne, N. (2007). Investigating the crosstalk between the gut microbiota and the host: the gut-brain axis. Consensus Report. Warsaw.Google Scholar
  6. Ben, X.M, and Li, J. (2008). Low level of galacto-oligosaccharide in infant formula stimulates growth of intestinal Bifidobacteria and Lactobacilli. World J Gastroenterol 14, 6564–6568.CrossRefGoogle Scholar
  7. Beraza, N., and Trautwein, C. (2008). The Gut-Brain-Liver Axis: A New Option to Treat Obesity and Diabetes? Hepatology 48, 1011–1013.CrossRefGoogle Scholar
  8. Bercik, P., Collins, S.M., and Verdu, E.F. (2012). Microbes and the gutbrain axis. Neurogastroenterol Motil 224, 405–413.CrossRefGoogle Scholar
  9. Bercik, P., Denou, E., Collins, J., Jackson, W., Lu, J., Jury, J., Deng, Y., Blennerhassett, P., Macri, J., McCoy, K.D., et al. (2011). The Intestinal Microbiota Affect Central Levels of Brain-Derived Neurotropic Factor and Behavior in Mice. Gastroenterology 141, 599–609.CrossRefGoogle Scholar
  10. Bishop, R. (2010). Applications of fluorescence in situ hybridization (FISH) in detecting genetic aberrations of medical significance. Biosci Horizons 3, 95–85.CrossRefGoogle Scholar
  11. Blaut, M., Collins, M.D., Welling, G.W., Doré, J., van, L.J., and de Vos, W. (2004). Molecular methods for the analysis of gut microbiota. Microbial Ecology Health Disease 16, 71–85.CrossRefGoogle Scholar
  12. Bocci, V. (1992). The neglected organ: bacterial flora has a crucial immunostimulatory role. Perspect Biol Med 35, 251–260.CrossRefGoogle Scholar
  13. Brian, W. P., Elizabeth, N., Elin, O., Emrah, K., Frode, N., Simon, T.H., Calvin, P., Mete, C., Christoph, D.R., Brian, J.B., et al. (2013). Genetic control of obesity and gut microbiota composition in response to high-fat, high-sucrose diet in mice. Cell Metab 17, 141–152.CrossRefGoogle Scholar
  14. Burcelin, R., Serino, M., Chabo, C., Blasco-Baque, V., and Amar, J. (2011). Gut microbiota and diabetes: from pathogenesis to therapeutic perspective. Acta Diabetol 4, 257–273.CrossRefGoogle Scholar
  15. Cattell, M., Lai, S., Cerny, R., and Medeiros, D.M. (2011). A new mechanistic scenario for the origin and evolution of vertebrate cartilage. PLoS ONE 6, e22474.CrossRefGoogle Scholar
  16. Cecilia, J., and Sonja, L. (2010). Long-term impacts of antibiotic exposure on the human intestinal microbiota. Microbiology 156, 113216–3223.Google Scholar
  17. Chong, B.E., Wall, D.B., Lubman, D.M., and Flynn, S.J. (1997). Rapid profiling of E. coli proteins up to 500 kDa from whole cell lysates using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 11, 1900–1908.CrossRefGoogle Scholar
  18. Claesson, M.J., O’Sullivan, O., Wang, Q., Nikkilä, J., Marchesi, J.R., Smidt, H., De Vos, W.M., Ross R.P., and O’Toole, P.W. (2009). Comparative analysis of Pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine. PLoS One 4, e6669.CrossRefGoogle Scholar
  19. Claesson, M.J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P., and O’Toole, P.W. (2010). Comparison of two nextgeneration sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res 38, e200.CrossRefGoogle Scholar
  20. Claydon, M.A., Davey, S.N., Edwards, J.V., and Gordon, D.B. (1996). The rapid identification of intact microorganisms using mass spectrometry. Nat Biotechnol 14, 1584–1586.CrossRefGoogle Scholar
  21. Collado, M.C., Isolauri, E., Laitinen, K., and Salminen, S. (2008). Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88, 894–899.Google Scholar
  22. Collins, S.M., Surette, M., and Bercik, P. (2012). The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10, 735–742.CrossRefGoogle Scholar
  23. Cryan, J.F., and Dinan, T.G. (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behavior. Nat Rev Neurosci 13, 701–712.CrossRefGoogle Scholar
  24. Cryan, J.F., and O’Mahony, S.M., (2011). The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil 23, 187–192.CrossRefGoogle Scholar
  25. Desbonnet, L., Garrett, L., Clarke, G., Bienenstock, J., and Dinan, T.G. (2008). The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res 43, 164–174.CrossRefGoogle Scholar
  26. Dethlefsen, L., Sue, H., Mitchell, L.S., and Relman, D.A. (2008). The pervasive effects of an antibiotic on the human gut microbiota, as revealed by deep 16S rRNA sequencing. PLoS Biol 6, e280.CrossRefGoogle Scholar
  27. Dumont, M.G., Neufeld, J.D., and Murrell, J.C. (2006). Isotopes as tools for microbial ecologists. Curr Opin Biotech 17, 57–58.CrossRefGoogle Scholar
  28. Eckburg, P.B., Elisabeth, M.B., Charles, N.B., Elizabeth, P., Dethlefsen, L., Sargent, M., Gill, R.S., Nelson, K.E., and Relman, D.A. (2005). Diversity of the human intestinal microbial flora. Science 308, 1635–1638.CrossRefGoogle Scholar
  29. Zhang, S. M., Tian, F., Huang, Q. F., Zhao, Y. F., Guo, X. K. and Zhang, F. Q. (2011). Bacterial diversity of subgingival plaque in 6 healthy Chinese individuals. Exp Ther Med 2, 1023–1029.CrossRefGoogle Scholar
  30. Finegold, S.M., Molitoris, D., Song, Y., Liu, C., Vaisanen, M.L., Bolte, E., McTeague, M., Sandler, R., Wexler, H., Marlowe, E.M., et al. (2002). Gastrointestinal microflora studies in late-onset autism. Clin Infect Dis 35, S6–16.CrossRefGoogle Scholar
  31. Fredrik, B., Ruth, E.L., Justin, L.S., Daniel, A.P., and Jeffrey, I.G. (2005). Host-bacterial mutualism in the human intestine. Science 307, 1915–1920.CrossRefGoogle Scholar
  32. Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I, Relman, D.A., Fraser-Liggett, C.M., and Karen, E. (2006). Nelson metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359.CrossRefGoogle Scholar
  33. Greenblum, S., Turnbaugh, P.J., and Borenstein, E. (2012). Metagenomic systems biology of the human gut microbiome reveals topological shifts associated with obesity and inflammatory bowel disease. Proc Natl Acad Sci U S A 109, 594–599.CrossRefGoogle Scholar
  34. Greiner, T., Bäckhed, F. (2011). Effects of the gut microbiota on obesity and glucose homeostasis. Trends Endocrinol Metab 22, 117–123.CrossRefGoogle Scholar
  35. Hamady, M., Walker, J.J., Harris, J.K., Gold, N.J., and Knight, R. (2008). Error correcting barcoded primers for pyrosequencing hundreds of samples in multiplex. Nat Methods 5, 235–237.CrossRefGoogle Scholar
  36. He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., Wu, W., Gu, B., Jardine, P., et al. (2007). GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1, 67–77.CrossRefGoogle Scholar
  37. Heijtz, R.D., Wang, S., Anuar, F., Qian, Y., Björkholm, B., Samuelsson, A., Hibberd, M.L., Forssberg, H., and Pettersson, S. (2011). Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci U S A 108, 3047–3052.CrossRefGoogle Scholar
  38. Hernandez-Sanabria, E., Guan, L.L., Laksiri, A., Li, M., Mujibi, D.F., Stothard, P., Moore, S.S., and Leon-Quintero, M.C. (2010). Correlation of particular bacterial PCR-denaturing gradient gel electrophoresis patterns with bovine ruminal fermentation parameters and feed efficiency traits. App Envior Biol 76, 6338–6350.CrossRefGoogle Scholar
  39. Holland, R.D., Wilkes, J.G., Rafii, F., Sutherland, J.B., Persons, C.C., Voorhees, K.J., and Lay J.O. Jr. (1996). Rapid identification of intact whole bacteria based on spectral patterns using matrix-assisted laser desorption/ionization with time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 10, 1227–1232.CrossRefGoogle Scholar
  40. Hopkins, M.J., and Sharp, R. (2001). Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48, 198–205.CrossRefGoogle Scholar
  41. Huang, W.E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., Whiteley, A.S., and Wagner, M. (2007). Raman-fish: Combining stableisotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ Microbiol 9, 1878–1889.CrossRefGoogle Scholar
  42. Jock, S., and Geider, K. (2004). Molecular differentiation of Erwinia amylovora strains from North America and of two Asian pear pathogens by analyses of PFGE patterns and hrpN genes. Environ Microbiol 6, 480–490.CrossRefGoogle Scholar
  43. Kim, P.I., Erickson, B.D., and Cerniglia, C.E. (2005). A membranearray method to detect specific human intestinal bacteria in fecal samples using reverse transcriptase-PCR and chemiluminescence. J Microbiol Biotechnol 15, 310–320.Google Scholar
  44. Krishnamurthy, T., and Ross, P.L. (1996). Rapid identification of bacteria by direct matrix-assisted laser desorption/ionization mass spectrometric analysis of whole cells. Rapid Commun Mass Spectrom 10, 1992–1996.CrossRefGoogle Scholar
  45. Kurz, C.M., Moosdijk, S.V., Thielecke, H., and Velten, T. (2011). Towards a cellular multi-parameter analysis platform: fluorescence in situ hybridization (FISH) on microhole-array chips. Conf Proc IEEE Eng Med Biol Soc, 8408–8411.Google Scholar
  46. Kuypers, M.M.M., and Jørgensen, B.B. (2007). The future of single-cell environmental microbiology. Environ Microbiol 9, 6–7.CrossRefGoogle Scholar
  47. Lagier, J.C., Million, M., Hugon, P., Armougom, F., and Raoult, D. (2012). Human Gut Microbiota: Repertoire and Variations. Front Cell Infect Microbiol 2, 136.CrossRefGoogle Scholar
  48. Lewis, S., and Cochrane, S. (2007). Alteration of sulfate and hydrogen metabolism in the human colon by changing intestinal transit rate. Am J Gastroenterol 102, 624–633.CrossRefGoogle Scholar
  49. Lotta, N., Reetta, S., and Janne, N. (2013). Microarray analysis reveals marked intestinal microbiota aberrancy in infants having eczema compared to healthy children in at-risk for atopic disease. BMC Microbiology 13, 12.CrossRefGoogle Scholar
  50. Loy, A., Lehner, A., and Lee, N. (2002). Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl Environ Microbiol 68, 5064–5081.CrossRefGoogle Scholar
  51. Manco, M. (2012). Gut microbiota and developmental programming of the brain: from evidence in behavioral endophenotypes to novel perspective in obesity. Front Cell Inf Microbio 2, 109.CrossRefGoogle Scholar
  52. Migrenne, S., Marsollier, N., Cruciani-Guglielmacci, C., Magnan, C. (2006). Importance of the gut-brain axis in the control of glucose Homeostasis. Curr Opin Pharmacol 6, 592–597.CrossRefGoogle Scholar
  53. Musso, G., Gambino, M., and Cassader, M. (2010). Obesity, diabetes, and gut microbiota. Diabetes Care 33, 2277–2284.CrossRefGoogle Scholar
  54. Neufeld, K.M., Kang, N., Bienenstock, J., and Foster, J.A. (2011). Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 23, 255–264.CrossRefGoogle Scholar
  55. Nordlie, R.C., and Foster, J.D. (1999). Regulation of glucose production by the liver. Annu Rev Nutr 19, 379–406.CrossRefGoogle Scholar
  56. Paliy, O., Kenche, H., Abernathy, F., and Michail, S. (2009). Highthroughput quantitative analysis of the human intestinal microbiota with a phylogenetic microarray. Appl Environ Microbiol 75, 3572–3579.CrossRefGoogle Scholar
  57. Palmer, C., Bik, E.M., and DiGiulio, D.B. (2007). Development of the human infant intestinal microbiota. PLoS Biol 5, e177.CrossRefGoogle Scholar
  58. Palmer, C., Bik, E.M., and Eisen, M.B. (2006). Rapid quantitative profiling of complex microbial populations. Nucleic Acids Res 34, e5.CrossRefGoogle Scholar
  59. Peterson, D.A., Frank, D.N., Pace, N.R., and Gordon, J.I. (2008). Metagenomic approaches for defining the pathogenesis of inflammatory bowel diseases. Cell Host Microbe 3, 417–427.CrossRefGoogle Scholar
  60. Rakoff, N.S., Paglino, J., Eslami, V.F., Edberg, S., and Medzhitov, R. (2004). Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241.CrossRefGoogle Scholar
  61. Sam, A.H., Troke, R.C., Tan, T.M., and Bewick, G.A. (2012). The role of the gut/brain axis in modulating food intake. Neuropharmacology 63, 46–56.CrossRefGoogle Scholar
  62. Savage, D.C. (1977). Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol 31, 107–133.CrossRefGoogle Scholar
  63. Shanahan, F. (2002). The host-microbe interface within the gut. Best Pract Res Clin Gastroenterol 16, 915–931.CrossRefGoogle Scholar
  64. Sintchenko, V., Iredell, J.R., and Gilbert, G.L. (2007). Pathogen profiling for disease management and surveillance. Nat Rev Microbiol 5, 464–470.CrossRefGoogle Scholar
  65. Sogin, L.M., Morrison, H.G., Huber, J.A., Welch, D.M., Huse, S.M., Neal, P.R., Arrieta, J.M., and Herndl, J.G. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A 103, 12115–12120.CrossRefGoogle Scholar
  66. Stappenbeck, T.S., Hooper, L.V., and Gordon, J.I. (2001). Commensal host-bacterial relationships in the gut. Science 292, 1115–1118.CrossRefGoogle Scholar
  67. Stappenbeck, T.S., Hooper, L.V., and Gordon, J.I. (2002). Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci U S A 99, 15451–15455.CrossRefGoogle Scholar
  68. Sudo, N., Chida, Y., Aiba, Y., Sonoda, J., Oyama, N., Yu, X.N., Kubo, C., and Koga, Y. (2004). Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol 558, 263–275.CrossRefGoogle Scholar
  69. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. (2008). A core gut microbiome in obese and lean twins. Nature 457, 480–484.CrossRefGoogle Scholar
  70. Turnbull, A.V., and Rivier, C.L. (1999). Regulation of the hypothalamicpituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol rev 79, 1–71.Google Scholar
  71. Walker, J.R., Ediger, J.P., Graff, L.A., Greenfeld, J.M., Clara, I., Lix, L., Rawsthorne, P., Miller, N., Rogala, L., McPhail, C.M., and Bernstein, C.N. (2008). The Manitoba IBD cohort study: a populationbased study of the prevalence of lifetime and 12-month anxiety and mood disorders. Am J Gastroenterol 103, 1989–1997.CrossRefGoogle Scholar
  72. Wang, P.Y., Caspi, L., Lam, C.K., Chari, M., Li, X., Light, P.E., Gutierrez-Juarez, R., Ang, M., Schwartz, G.J., and Lam, T.K. (2008). Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452, 1012–1016.CrossRefGoogle Scholar
  73. Welker, M. (2012). MALDI-TOF MS for identification of microorganisms: a new era in clinical microbiological research and diagnosis. In: Hays, J.P., van Leeuwen, W.B. (Eds.), The Role of New Technologies in Medical Microbiological Research and Diagnosis, Bentham Science Publishers, Bussum.Google Scholar
  74. Whitehead, W.E., Palsson, O., and Jones, K.R. (2002). Systematic review of the comorbidity of irritable bowel syndrome with other disorders: what are the causes and implications. Gastroenterology 122, 1140–1156.CrossRefGoogle Scholar
  75. Wook, H.S., Kim, I.S., Lee, J.S., and Chung, K.S. (2011). Culture-Based and Denaturing Gradient Gel Electrophoresis Analysis of the Bacterial Community Structure from the Intestinal Tracts of Earthworms (Eisenia fetida). J Microbiol Biotechnol 21, 885–892.CrossRefGoogle Scholar
  76. Wu, L., Thompson, D.K., Liu, X., Fields, M.W., Bagwell, C.E., Tiedje, J.M., and Zhou, J. (2004). Development and evaluation of microarray-based whole genome hybridization for detection of microorganisms within the context of environmental applications. Environ Sci Technol 38, 6775–6782.CrossRefGoogle Scholar
  77. Zhang, H., DiBaise, J.K, Zuccolo, A., Kudrna, D., Braidotti, M., Yu, Y., Parameswaran, P., Crowell, M.D., Wing, R., and Rittmann, B.E. (2009). Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106, 2365–2370.CrossRefGoogle Scholar
  78. Zimmer, C. (2010). How microbes defend and define us. New York Times. 17 July.Google Scholar
  79. Simrén, M., Barbara, G., Flint, H.J., Spiegel, B. M., Spiller, R. C., Vanner, S., Verdu, E. F., Whorwell, P. J., and Zoetendal, E. G. (2013). Intestinal microbiota in functional bowel disorders: a Rome foundation report. Gut 62, 159–176.CrossRefGoogle Scholar
  80. Sekirov, I., Russell, S. L., Antunes, L. C. M., and Brett Finlay, B. (2010). Gut Microbiota in Health and Disease. Physiol Rev 90, 859–904.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Xiao Chen
    • 1
  • Roshan D’Souza
    • 2
  • Seong-Tshool Hong
    • 1
    Email author
  1. 1.BDRD Research InstituteJINIS Biopharmaceuticals IncChonbukSouth Korea
  2. 2.Department of Microbiology and Genetics and Institute for Medical ScienceChonbuk National University Medical SchoolJeonjuSouth Korea

Personalised recommendations