Protein & Cell

, Volume 4, Issue 5, pp 342–355 | Cite as

Thymic epithelial cell development and differentiation: cellular and molecular regulation

  • Lina Sun
  • Haiying Luo
  • Hongran Li
  • Yong ZhaoEmail author


Thymic epithelial cells (TECs) are one of the most important components in thymic microenvironment supporting thymocyte development and maturation. TECs, composed of cortical and medullary TECs, are derived from a common bipotent progenitor, mediating thymocyte positive and negative selections. Multiple levels of signals including intracellular signaling networks and cell-cell interaction are required for TEC development and differentiation. Transcription factors Foxn1 and autoimmune regulator (Aire) are powerful regulators promoting TEC development and differentiation. Crosstalks with thymocytes and other stromal cells for extrinsic signals like RANKL, CD40L, lymphotoxin, fibroblast growth factor (FGF) and Wnt are also definitely required to establish a functional thymic microenvironment. In this review, we will summarize our current understanding about TEC development and differentiation, and its underlying multiple signal pathways.


thymus thymic epithelial cells Aire Foxn1 TNFR NF-κB FGFs 


  1. Akiyama, T., Maeda, S., Yamane, S., Ogino, K., Kasai, M., Kajiura, F., Matsumoto, M., and Inoue, J. (2005). Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308, 248–251.Google Scholar
  2. Akiyama, T., Shimo, Y., Yanai, H., Qin, J., Ohshima, D., Maruyama, Y., Asaumi, Y., Kitazawa, J., Takayanagi, H., Penninger, J.M., et al. (2008). The tumor necrosis factor family receptors RANK and CD40 cooperatively establish the thymic medullary microenvironment and self-tolerance. Immunity 29, 423–437.Google Scholar
  3. Akiyama, T., Shinzawa, M., and Akiyama, N. (2012). TNF receptor family signaling in the development and functions of medullary thymic epithelial cells. Front Immunol 3, 278.Google Scholar
  4. Alexandropoulos, K., and Danzl, N.M. (2012). Thymic epithelial cells: antigen presenting cells that regulate T cell repertoire and tolerance development. Immunol Res 54, 177–190.Google Scholar
  5. Alexandropoulos, K., Donlin, L.T., Xing, L., and Regelmann, A.G. (2003). Sin: good or bad? A T lymphocyte perspective. Immunol Rev 192, 181–195.Google Scholar
  6. Alpdogan, O., Hubbard, V.M., Smith, O.M., Patel, N., Lu, S., Goldberg, G.L., Gray, D.H., Feinman, J., Kochman, A.A., Eng, J.M., et al. (2006). Keratinocyte growth factor (KGF) is required for postnatal thymic regeneration. Blood 107, 2453–2460.Google Scholar
  7. Anderson, G., and Takahama, Y. (2012). Thymic epithelial cells: working class heroes for T cell development and repertoire selection. Trends Immunol 33, 256–263.Google Scholar
  8. Anderson, M.S., Venanzi, E.S., Klein, L., Chen, Z., Berzins, S.P., Turley, S.J., von Boehmer, H., Bronson, R., Dierich, A., Benoist, C., et al. (2002). Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401.Google Scholar
  9. Auerbach, R. (1960). Morphogenetic interactions in the development of the mouse thymus gland. Dev Biol 2, 271–284.Google Scholar
  10. Balciunaite, G., Keller, M.P., Balciunaite, E., Piali, L., Zuklys, S., Mathieu, Y.D., Gill, J., Boyd, R., Sussman, D.J., and Hollander, G.A. (2002). Wnt glycoproteins regulate the expression of FoxN1, the gene defective in nude mice. Nat Immunol 3, 1102–1108.Google Scholar
  11. Basak, S., and Hoffmann, A. (2008). Crosstalk via the NF-kappaB signaling system. Cytokine Growth Factor Rev 19, 187–197.Google Scholar
  12. Baxter, R.M., and Brissette, J.L. (2002). Role of the nude gene in epithelial terminal differentiation. J Invest Dermatol 118, 303–309.Google Scholar
  13. Bennett, A.R., Farley, A., Blair, N.F., Gordon, J., Sharp, L., and Blackburn, C.C. (2002). Identification and characterization of thymic epithelial progenitor cells. Immunity 16, 803–814.Google Scholar
  14. Berent-Maoz, B., Montecino-Rodriguez, E., Signer, R.A., and Dorshkind, K. (2012). Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a. Blood 119, 5715–5721.Google Scholar
  15. Blackburn, C.C., Augustine, C.L., Li, R., Harvey, R.P., Malin, M.A., Boyd, R.L., Miller, J.F., and Morahan, G. (1996). The nu gene acts cell-autonomously and is required for differentiation of thymic epithelial progenitors. Proc Natl Acad Sci U S A 93, 5742–5746.Google Scholar
  16. Bleul, C.C., and Boehm, T. (2005). BMP signaling is required for normal thymus development. J Immunol 175, 5213–5221.Google Scholar
  17. Bleul, C.C., Corbeaux, T., Reuter, A., Fisch, P., Monting, J.S., and Boehm, T. (2006). Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 441, 992–996.Google Scholar
  18. Bockman, D.E., and Kirby, M.L. (1984). Dependence of thymus development on derivatives of the neural crest. Science 223, 498–500.Google Scholar
  19. Boehm, T., Scheu, S., Pfeffer, K., and Bleul, C.C. (2003). Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTbetaR. J Exp Med 198, 757–769.Google Scholar
  20. Bravo-Nuevo, A., O’Donnell, R., Rosendahl, A., Chung, J.H., Benjamin, L.E., and Odaka, C. RhoB deficiency in thymic medullary epithelium leads to early thymic atrophy. Int Immunol 23, 593–600.Google Scholar
  21. Burkly, L., Hession, C., Ogata, L., Reilly, C., Marconi, L.A., Olson, D., Tizard, R., Cate, R., and Lo, D. (1995). Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373, 531–536.Google Scholar
  22. Calderon, L., and Boehm, T. (2012). Synergistic, context-dependent, and hierarchical functions of epithelial components in thymic microenvironments. Cell 149, 159–172.Google Scholar
  23. Candi, E., Dinsdale, D., Rufini, A., Salomoni, P., Knight, R.A., Mueller, M., Krammer, P.H., and Melino, G. (2007a). TAp63 and DeltaNp63 in cancer and epidermal development. Cell Cycle 6, 274–285.Google Scholar
  24. Candi, E., Rufini, A., Terrinoni, A., Giamboi-Miraglia, A., Lena, A.M., Mantovani, R., Knight, R., and Melino, G. (2007b). DeltaNp63 regulates thymic development through enhanced expression of FgfR2 and Jag2. Proc Natl Acad Sci U S A 104, 11999–12004.Google Scholar
  25. Chen, L., Xiao, S., and Manley, N.R. (2009). Foxn1 is required to maintain the postnatal thymic microenvironment in a dosage-sensitive manner. Blood 113, 567–574.Google Scholar
  26. Cheng, L., Guo, J., Sun, L., Fu, J., Barnes, P.F., Metzger, D., Chambon, P., Oshima, R.G., Amagai, T., and Su, D.M. (2010). Postnatal tissue-specific disruption of transcription factor FoxN1 triggers acute thymic atrophy. J Biol Chem 285, 5836–5847.Google Scholar
  27. Chin, R.K., Lo, J.C., Kim, O., Blink, S.E., Christiansen, P.A., Peterson, P., Wang, Y., Ware, C., and Fu, Y.X. (2003). Lymphotoxin pathway directs thymic Aire expression. Nat Immunol 4, 1121–1127.Google Scholar
  28. Chin, R.K., Zhu, M., Christiansen, P.A., Liu, W., Ware, C., Peltonen, L., Zhang, X., Guo, L., Han, S., Zheng, B., et al. (2006). Lymphotoxin pathway-directed, autoimmune regulator-independent central tolerance to arthritogenic collagen. J Immunol 177, 290–297.Google Scholar
  29. Corbeaux, T., Hess, I., Swann, J.B., Kanzler, B., Haas-Assenbaum, A., and Boehm, T. (2010). Thymopoiesis in mice depends on a Foxn1- positive thymic epithelial cell lineage. Proc Natl Acad Sci U S A 107, 16613–16618.Google Scholar
  30. Cordier, A.C., and Heremans, J.F. (1975). Nude mouse embryo: ectodermal nature of the primordial thymic defect. Scand J Immunol 4, 193–196.Google Scholar
  31. Danso-Abeam, D., Humblet-Baron, S., Dooley, J., and Liston, A. (2011). Models of aire-dependent gene regulation for thymic negative selection. Front Immunol 2, 14.Google Scholar
  32. Danzl, N.M., Donlin, L.T., and Alexandropoulos, K. (2010). Regulation of medullary thymic epithelial cell differentiation and function by the signaling protein Sin. J Exp Med 207, 999–1013.Google Scholar
  33. Derbinski, J., Gabler, J., Brors, B., Tierling, S., Jonnakuty, S., Hergenhahn, M., Peltonen, L., Walter, J., and Kyewski, B. (2005). Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J Exp Med 202, 33–45.Google Scholar
  34. Derbinski, J., Pinto, S., Rosch, S., Hexel, K., and Kyewski, B. (2008). Promiscuous gene expression patterns in single medullary thymic epithelial cells argue for a stochastic mechanism. Proc Natl Acad Sci U S A 105, 657–662.Google Scholar
  35. Dooley, J., Erickson, M., and Farr, A.G. (2008). Alterations of the medullary epithelial compartment in the Aire-deficient thymus: implications for programs of thymic epithelial differentiation. J Immunol 181, 5225–5232.Google Scholar
  36. Endres, R., Alimzhanov, M.B., Plitz, T., Futterer, A., Kosco-Vilbois, M.H., Nedospasov, S.A., Rajewsky, K., and Pfeffer, K. (1999). Mature follicular dendritic cell networks depend on expression of lymphotoxin beta receptor by radioresistant stromal cells and of lymphotoxin beta and tumor necrosis factor by B cells. J Exp Med 189, 159–168.Google Scholar
  37. Erickson, M., Morkowski, S., Lehar, S., Gillard, G., Beers, C., Dooley, J., Rubin, J.S., Rudensky, A., and Farr, A.G. (2002). Regulation of thymic epithelium by keratinocyte growth factor. Blood 100, 3269–3278.Google Scholar
  38. Farr, A.G., Dooley, J.L., and Erickson, M. (2002). Organization of thymic medullary epithelial heterogeneity: implications for mechanisms of epithelial differentiation. Immunol Rev 189, 20–27.Google Scholar
  39. Flomerfelt, F.A., El Kassar, N., Gurunathan, C., Chua, K.S., League, S.C., Schmitz, S., Gershon, T.R., Kapoor, V., Yan, X.Y., Schwartz, R.H., et al. (2010). Tbata modulates thymic stromal cell proliferation and thymus function. J Exp Med 207, 2521–2532.Google Scholar
  40. Flomerfelt, F.A., Kim, M.G., and Schwartz, R.H. (2000). Spatial, a gene expressed in thymic stromal cells, depends on three-dimensional thymus organization for its expression. Genes Immun 1, 391–401.Google Scholar
  41. Frank, D.U., Fotheringham, L.K., Brewer, J.A., Muglia, L.J., Tristani-Firouzi, M., Capecchi, M.R., and Moon, A.M. (2002). An Fgf8 mouse mutant phenocopies human 22q11 deletion syndrome. Development 129, 4591–4603.Google Scholar
  42. Futterer, A., Mink, K., Luz, A., Kosco-Vilbois, M.H., and Pfeffer, K. (1998). The lymphotoxin beta receptor controls organogenesis and affinity maturation in peripheral lymphoid tissues. Immunity 9, 59–70.Google Scholar
  43. Gabler, J., Arnold, J., and Kyewski, B. (2007). Promiscuous gene expression and the developmental dynamics of medullary thymic epithelial cells. Eur J Immunol 37, 3363–3372.Google Scholar
  44. Gardiner, J.R., Jackson, A.L., Gordon, J., Lickert, H., Manley, N.R., and Basson, M.A. (2012). Localised inhibition of FGF signalling in the third pharyngeal pouch is required for normal thymus and parathyroid organogenesis. Development 139, 3456–3466.Google Scholar
  45. Gardner, J.M., Fletcher, A.L., Anderson, M.S., and Turley, S.J. (2009). AIRE in the thymus and beyond. Curr Opin Immunol 21, 582–589.Google Scholar
  46. Gillard, G.O., Dooley, J., Erickson, M., Peltonen, L., and Farr, A.G. (2007). Aire-dependent alterations in medullary thymic epithelium indicate a role for Aire in thymic epithelial differentiation. J Immunol 178, 3007–3015.Google Scholar
  47. Gillard, G.O., and Farr, A.G. (2005). Contrasting models of promiscuous gene expression by thymic epithelium. J Exp Med 202, 15–19.Google Scholar
  48. Giraud, M., Yoshida, H., Abramson, J., Rahl, P.B., Young, R.A., Mathis, D., and Benoist, C. (2012). Aire unleashes stalled RNA polymerase to induce ectopic gene expression in thymic epithelial cells. Proc Natl Acad Sci U S A 109, 535–540.Google Scholar
  49. Gommeaux, J., Gregoire, C., Nguessan, P., Richelme, M., Malissen, M., Guerder, S., Malissen, B., and Carrier, A. (2009). Thymus-specific serine protease regulates positive selection of a subset of CD4+ thymocytes. Eur J Immunol 39, 956–964.Google Scholar
  50. Gossens, K., Naus, S., Hollander, G.A., and Ziltener, H.J. (2010). Deficiency of the metalloproteinase-disintegrin ADAM8 is associated with thymic hyper-cellularity. PLoS One 5, e12766.Google Scholar
  51. Gravano, D.M., McLelland, B.T., Horiuchi, K., and Manilay, J.O. (2010). ADAM17 deletion in thymic epithelial cells alters aire expression without affecting T cell developmental progression. PLoS One 5, e13528.Google Scholar
  52. Gray, D., Abramson, J., Benoist, C., and Mathis, D. (2007). Proliferative arrest and rapid turnover of thymic epithelial cells expressing Aire. J Exp Med 204, 2521–2528.Google Scholar
  53. Guerder, S., Viret, C., Luche, H., Ardouin, L., and Malissen, B. (2012). Differential processing of self-antigens by subsets of thymic stromal cells. Curr Opin Immunol 24, 99–104.Google Scholar
  54. Guo, J., Feng, Y., Barnes, P., Huang, F.F., Idell, S., Su, D.M., and Shams, H. (2012). Deletion of FoxN1 in the thymic medullary epithelium reduces peripheral T cell responses to infection and mimics changes of aging. PLoS One 7, e34681.Google Scholar
  55. Hale, L.P., and Markert, M.L. (2004). Corticosteroids regulate epithelial cell differentiation and Hassall body formation in the human thymus. J Immunol 172, 617–624.Google Scholar
  56. Hamazaki, Y., Fujita, H., Kobayashi, T., Choi, Y., Scott, H.S., Matsumoto, M., and Minato, N. (2007). Medullary thymic epithelial cells expressing Aire represent a unique lineage derived from cells expressing claudin. Nat Immunol 8, 304–311.Google Scholar
  57. Heinonen, K.M., Vanegas, J.R., Brochu, S., Shan, J., Vainio, S.J., and Perreault, C. (2011a). Wnt4 regulates thymic cellularity through the expansion of thymic epithelial cells and early thymic progenitors. Blood 118, 5163–5173.Google Scholar
  58. Heinonen, K.M., Vanegas, J.R., Lew, D., Krosl, J., and Perreault, C. (2011b). Wnt4 enhances murine hematopoietic progenitor cell expansion through a planar cell polarity-like pathway. PLoS One 6, e19279.Google Scholar
  59. Hikosaka, Y., Nitta, T., Ohigashi, I., Yano, K., Ishimaru, N., Hayashi, Y., Matsumoto, M., Matsuo, K., Penninger, J.M., Takayanagi, H., et al. (2008). The cytokine RANKL produced by positively selected thymocytes fosters medullary thymic epithelial cells that express autoimmune regulator. Immunity 29, 438–450.Google Scholar
  60. Irla, M., Hollander, G., and Reith, W. (2009). Control of central self-tolerance induction by autoreactive CD4+ thymocytes. Trends Immunol 31, 71–79.Google Scholar
  61. Irla, M., Hugues, S., Gill, J., Nitta, T., Hikosaka, Y., Williams, I.R., Hubert, F.X., Scott, H.S., Takahama, Y., Hollander, G.A., et al. (2008). Autoantigen-specific interactions with CD4+ thymocytes control mature medullary thymic epithelial cell cellularity. Immunity 29, 451–463.Google Scholar
  62. Itoi, M., Kawamoto, H., Katsura, Y., and Amagai, T. (2001). Two distinct steps of immigration of hematopoietic progenitors into the early thymus anlage. Int Immunol 13, 1203–1211.Google Scholar
  63. Janes, S.M., Ofstad, T.A., Campbell, D.H., Watt, F.M., and Prowse, D.M. (2004). Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt. J Cell Sci 117, 4157–4168.Google Scholar
  64. Jenkinson, W.E., Bacon, A., White, A.J., Anderson, G., and Jenkinson, E.J. (2008). An epithelial progenitor pool regulates thymus growth. J Immunol 181, 6101–6108.Google Scholar
  65. Jenkinson, W.E., Jenkinson, E.J., and Anderson, G. (2003). Differential requirement for mesenchyme in the proliferation and maturation of thymic epithelial progenitors. J Exp Med 198, 325–332.Google Scholar
  66. Kajiura, F., Sun, S., Nomura, T., Izumi, K., Ueno, T., Bando, Y., Kuroda, N., Han, H., Li, Y., Matsushima, A., et al. (2004). NF-kappa B-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J Immunol 172, 2067–2075.Google Scholar
  67. Kinoshita, D., Hirota, F., Kaisho, T., Kasai, M., Izumi, K., Bando, Y., Mouri, Y., Matsushima, A., Niki, S., Han, H., et al. (2006). Essential role of IkappaB kinase alpha in thymic organogenesis required for the establishment of self-tolerance. J Immunol 176, 3995–4002.Google Scholar
  68. Koch, U., Fiorini, E., Benedito, R., Besseyrias, V., Schuster-Gossler, K., Pierres, M., Manley, N.R., Duarte, A., Macdonald, H.R., and Radtke, F. (2008). Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205, 2515–2523.Google Scholar
  69. Kvell, K., Varecza, Z., Bartis, D., Hesse, S., Parnell, S., Anderson, G., Jenkinson, E.J., and Pongracz, J.E. (2010). Wnt4 and LAP2alpha as pacemakers of thymic epithelial senescence. PLoS One 5, e10701.Google Scholar
  70. Liiv, I., Haljasorg, U., Kisand, K., Maslovskaja, J., Laan, M., and Peterson, P. (2012). AIRE-induced apoptosis is associated with nuclear translocation of stress sensor protein GAPDH. Biochem Biophys Res Commun 423, 32–37.Google Scholar
  71. Liu, C., Saito, F., Liu, Z., Lei, Y., Uehara, S., Love, P., Lipp, M., Kondo, S., Manley, N., and Takahama, Y. (2006). Coordination between CCR7- and CCR9-mediated chemokine signals in prevascular fetal thymus colonization. Blood 108, 2531–2539.Google Scholar
  72. Lomada, D., Liu, B., Coghlan, L., Hu, Y., and Richie, E.R. (2007). Thymus medulla formation and central tolerance are restored in IKKalpha-/- mice that express an IKKalpha transgene in keratin 5+ thymic epithelial cells. J Immunol 178, 829–837.Google Scholar
  73. Macedo, C., Evangelista, A.F., Marques, M.M., Octacilio-Silva, S., Donadi, E.A., Sakamoto-Hojo, E.T., and Passos, G.A. (2012). Autoimmune regulator (Aire) controls the expression of microRNAs in medullary thymic epithelial cells. Immunobiology 218, 554–560.Google Scholar
  74. Manley, N.R., and Condie, B.G. (2010). Transcriptional regulation of thymus organogenesis and thymic epithelial cell differentiation. Prog Mol Biol Transl Sci 92, 103–120.Google Scholar
  75. Martins, V.C., Boehm, T., and Bleul, C.C. (2008). Ltbetar signaling does not regulate Aire-dependent transcripts in medullary thymic epithelial cells. J Immunol 181, 400–407.Google Scholar
  76. Masuda, K., Germeraad, W.T., Satoh, R., Itoi, M., Ikawa, T., Minato, N., Katsura, Y., van Ewijk, W., and Kawamoto, H. (2009). Notch activation in thymic epithelial cells induces development of thymic microenvironments. Mol Immunol 46, 1756–1767.Google Scholar
  77. Mathis, D., and Benoist, C. (2009). Aire. Annu Rev Immunol 27, 287–312.Google Scholar
  78. Min, D., Panoskaltsis-Mortari, A., Kuro, O.M., Hollander, G.A., Blazar, B.R., and Weinberg, K.I. (2007). Sustained thymopoiesis and improvement in functional immunity induced by exogenous KGF administration in murine models of aging. Blood 109, 2529–2537.Google Scholar
  79. Min, D., Taylor, P.A., Panoskaltsis-Mortari, A., Chung, B., Danilenko, D.M., Farrell, C., Lacey, D.L., Blazar, B.R., and Weinberg, K.I. (2002). Protection from thymic epithelial cell injury by keratinocyte growth factor: a new approach to improve thymic and peripheral T-cell reconstitution after bone marrow transplantation. Blood 99, 4592–4600.Google Scholar
  80. Mori, K., Itoi, M., Tsukamoto, N., and Amagai, T. (2010). Foxn1 is essential for vascularization of the murine thymus anlage. Cell Immunol 260, 66–69.Google Scholar
  81. Mouri, Y., Yano, M., Shinzawa, M., Shimo, Y., Hirota, F., Nishikawa, Y., Nii, T., Kiyonari, H., Abe, T., Uehara, H., et al. (2011). Lymphotoxin signal promotes thymic organogenesis by eliciting RANK expression in the embryonic thymic stroma. J Immunol 186, 5047–5057.Google Scholar
  82. Murata, S., Sasaki, K., Kishimoto, T., Niwa, S., Hayashi, H., Takahama, Y., and Tanaka, K. (2007). Regulation of CD8+ T cell development by thymus-specific proteasomes. Science 316, 1349–1353.Google Scholar
  83. Murata, S., Takahama, Y., and Tanaka, K. (2008). Thymoproteasome: probable role in generating positively selecting peptides. Curr Opin Immunol 20, 192–196.Google Scholar
  84. Nakagawa, T., Roth, W., Wong, P., Nelson, A., Farr, A., Deussing, J., Villadangos, J.A., Ploegh, H., Peters, C., and Rudensky, A.Y. (1998). Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science 280, 450–453.Google Scholar
  85. Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H., and Boehm, T. (1994). New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature 372, 103–107.Google Scholar
  86. Nishikawa, Y., Hirota, F., Yano, M., Kitajima, H., Miyazaki, J., Kawamoto, H., Mouri, Y., and Matsumoto, M. (2009). Biphasic Aire expression in early embryos and in medullary thymic epithelial cells before end-stage terminal differentiation. J Exp Med 207, 963–971.Google Scholar
  87. Nowell, C.S., Bredenkamp, N., Tetelin, S., Jin, X., Tischner, C., Vaidya, H., Sheridan, J.M., Stenhouse, F.H., Heussen, R., Smith, A.J., et al. (2011). Foxn1 regulates lineage progression in cortical and medullary thymic epithelial cells but is dispensable for medullary sublineage divergence. PLoS Genet 7, e1002348.Google Scholar
  88. Oliveira, E.H., Macedo, C., Donate, P.B., Almeida, R.S., Pezzi, N., Nguyen, C., Rossi, M.A., Sakamoto-Hojo, E.T., Donadi, E.A., and Passos, G.A. (2012). Expression profile of peripheral tissue antigen genes in medullary thymic epithelial cells (mTECs) is dependent on mRNA levels of autoimmune regulator (Aire). Immunobiology 218, 96–104.Google Scholar
  89. Osada, M., Jardine, L., Misir, R., Andl, T., Millar, S.E., and Pezzano, M. (2010). DKK1 mediated inhibition of Wnt signaling in postnatal mice leads to loss of TEC progenitors and thymic degeneration. PLoS One 5, e9062.Google Scholar
  90. Patel, S.R., Gordon, J., Mahbub, F., Blackburn, C.C., and Manley, N.R. (2006). Bmp4 and Noggin expression during early thymus and parathyroid organogenesis. Gene Expr Patterns 6, 794–799.Google Scholar
  91. Ramsey, C., Winqvist, O., Puhakka, L., Halonen, M., Moro, A., Kampe, O., Eskelin, P., Pelto-Huikko, M., and Peltonen, L. (2002). Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet 11, 397–409.Google Scholar
  92. Revest, J.M., Suniara, R.K., Kerr, K., Owen, J.J., and Dickson, C. (2001). Development of the thymus requires signaling through the fibroblast growth factor receptor R2-IIIb. J Immunol 167, 1954–1961.Google Scholar
  93. Ripen, A.M., Nitta, T., Murata, S., Tanaka, K., and Takahama, Y. (2011). Ontogeny of thymic cortical epithelial cells expressing the thymoproteasome subunit beta5t. Eur J Immunol 41, 1278–1287.Google Scholar
  94. Roberts, N.A., White, A.J., Jenkinson, W.E., Turchinovich, G., Nakamura, K., Withers, D.R., McConnell, F.M., Desanti, G.E., Benezech, C., Parnell, S.M., et al. (2012). Rank signaling links the development of invariant gammadelta T cell progenitors and Aire(+) medullary epithelium. Immunity 36, 427–437.Google Scholar
  95. Rode, I., and Boehm, T. (2012). Regenerative capacity of adult cortical thymic epithelial cells. Proc Natl Acad Sci U S A 109, 3463–3468.Google Scholar
  96. Rodewald, H.R., Paul, S., Haller, C., Bluethmann, H., and Blum, C. (2001). Thymus medulla consisting of epithelial islets each derived from a single progenitor. Nature 414, 763–768.Google Scholar
  97. Rossi, S., Blazar, B.R., Farrell, C.L., Danilenko, D.M., Lacey, D.L., Weinberg, K.I., Krenger, W., and Hollander, G.A. (2002). Keratinocyte growth factor preserves normal thymopoiesis and thymic microenvironment during experimental graft-versus-host disease. Blood 100, 682–691.Google Scholar
  98. Rossi, S.W., Jeker, L.T., Ueno, T., Kuse, S., Keller, M.P., Zuklys, S., Gudkov, A.V., Takahama, Y., Krenger, W., Blazar, B.R., et al. (2007a). Keratinocyte growth factor (KGF) enhances postnatal T-cell development via enhancements in proliferation and function of thymic epithelial cells. Blood 109, 3803–3811.Google Scholar
  99. Rossi, S.W., Jenkinson, W.E., Anderson, G., and Jenkinson, E.J. (2006). Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441, 988–991.Google Scholar
  100. Rossi, S.W., Kim, M.Y., Leibbrandt, A., Parnell, S.M., Jenkinson, W.E., Glanville, S.H., McConnell, F.M., Scott, H.S., Penninger, J.M., Jenkinson, E.J., et al. (2007b). RANK signals from CD4(+)3(−) inducer cells regulate development of Aire-expressing epithelial cells in the thymic medulla. J Exp Med 204, 1267–1272.Google Scholar
  101. Saade, M., Irla, M., Yammine, M., Boulanger, N., Victorero, G., Vincentelli, R., Penninger, J.M., Hollander, G.A., Chauvet, S., and Nguyen, C. (2010). Spatial (Tbata) expression in mature medullary thymic epithelial cells. Eur J Immunol 40, 530–538.Google Scholar
  102. Seach, N., Ueno, T., Fletcher, A.L., Lowen, T., Mattesich, M., Engwerda, C.R., Scott, H.S., Ware, C.F., Chidgey, A.P., Gray, D.H., et al. (2008). The lymphotoxin pathway regulates Aire-independent expression of ectopic genes and chemokines in thymic stromal cells. J Immunol 180, 5384–5392.Google Scholar
  103. Senoo, M., Pinto, F., Crum, C.P., and McKeon, F. (2007). p63 Is essential for the proliferative potential of stem cells in stratified epithelia. Cell 129, 523–536.Google Scholar
  104. Shakib, S., Desanti, G.E., Jenkinson, W.E., Parnell, S.M., Jenkinson, E.J., and Anderson, G. (2009). Checkpoints in the development of thymic cortical epithelial cells. J Immunol 182, 130–137.Google Scholar
  105. Sitnik, K.M., Kotarsky, K., White, A.J., Jenkinson, W.E., Anderson, G., and Agace, W.W. (2012). Mesenchymal cells regulate retinoic acid receptor-dependent cortical thymic epithelial cell homeostasis. J Immunol 188, 4801–4809.Google Scholar
  106. Su, D., Ellis, S., Napier, A., Lee, K., and Manley, N.R. (2001). Hoxa3 and pax1 regulate epithelial cell death and proliferation during thymus and parathyroid organogenesis. Dev Biol 236, 316–329.Google Scholar
  107. Su, D.M., Navarre, S., Oh, W.J., Condie, B.G., and Manley, N.R. (2003). A domain of Foxn1 required for crosstalk-dependent thymic epithelial cell differentiation. Nat Immunol 4, 1128–1135.Google Scholar
  108. Suniara, R.K., Jenkinson, E.J., and Owen, J.J. (2000). An essential role for thymic mesenchyme in early T cell development. J Exp Med 191, 1051–1056.Google Scholar
  109. Takahama, Y., Takada, K., Murata, S., and Tanaka, K. (2012). beta5tcontaining thymoproteasome: specific expression in thymic cortical epithelial cells and role in positive selection of CD8+ T cells. Curr Opin Immunol 24, 92–98.Google Scholar
  110. Talaber, G., Kvell, K., Varecza, Z., Boldizsar, F., Parnell, S.M., Jenkinson, E.J., Anderson, G., Berki, T., and Pongracz, J.E. (2011). Wnt4 protects thymic epithelial cells against dexamethasone-induced senescence. Rejuvenation Res 14, 241–248.Google Scholar
  111. Tsai, P.T., Lee, R.A., and Wu, H. (2003). BMP4 acts upstream of FGF in modulating thymic stroma and regulating thymopoiesis. Blood 102, 3947–3953.Google Scholar
  112. Varecza, Z., Kvell, K., Talaber, G., Miskei, G., Csongei, V., Bartis, D., Anderson, G., Jenkinson, E.J., and Pongracz, J.E. (2011). Multiple suppression pathways of canonical Wnt signalling control thymic epithelial senescence. Mech Ageing Dev 132, 249–256.Google Scholar
  113. Venanzi, E.S., Gray, D.H., Benoist, C., and Mathis, D. (2007). Lymphotoxin pathway and Aire influences on thymic medullary epithelial cells are unconnected. J Immunol 179, 5693–5700.Google Scholar
  114. Viret, C., Leung-Theung-Long, S., Serre, L., Lamare, C., Vignali, D.A., Malissen, B., Carrier, A., and Guerder, S. (2011). Thymus-specific serine protease controls autoreactive CD4 T cell development and autoimmune diabetes in mice. J Clin Invest 121, 1810–1821.Google Scholar
  115. Wang, X., Laan, M., Bichele, R., Kisand, K., Scott, H.S., and Peterson, P. (2012). Post-Aire maturation of thymic medullary epithelial cells involves selective expression of keratinocyte-specific autoantigens. Front Immunol 3, 19.Google Scholar
  116. Weber, S., Niessen, M.T., Prox, J., Lullmann-Rauch, R., Schmitz, A., Schwanbeck, R., Blobel, C.P., Jorissen, E., de Strooper, B., Niessen, C.M., et al. (2011). The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development 138, 495–505.Google Scholar
  117. Weih, F., Carrasco, D., Durham, S.K., Barton, D.S., Rizzo, C.A., Ryseck, R.P., Lira, S.A., and Bravo, R. (1995). Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 80, 331–340.Google Scholar
  118. Wendling, O., Dennefeld, C., Chambon, P., and Mark, M. (2000). Retinoid signaling is essential for patterning the endoderm of the third and fourth pharyngeal arches. Development 127, 1553–1562.Google Scholar
  119. West, K.P., Jr., Howard, G.R., and Sommer, A. (1989). Vitamin A and infection: public health implications. Annu Rev Nutr 9, 63–86.Google Scholar
  120. White, A.J., Nakamura, K., Jenkinson, W.E., Saini, M., Sinclair, C., Seddon, B., Narendran, P., Pfeffer, K., Nitta, T., Takahama, Y., et al. (2010). Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells. J Immunol 185, 4769–4776.Google Scholar
  121. Wodarz, A., and Nusse, R. (1998). Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol 14, 59–88.Google Scholar
  122. Xia, J., Wang, H., Guo, J., Zhang, Z., Coder, B., and Su, D.M. (2012). Age-Related Disruption of Steady-State Thymic Medulla Provokes Autoimmune Phenotype via Perturbing Negative Selection. Aging Dis 3, 248–259.Google Scholar
  123. Yano, M., Kuroda, N., Han, H., Meguro-Horike, M., Nishikawa, Y., Kiyonari, H., Maemura, K., Yanagawa, Y., Obata, K., Takahashi, S., et al. (2008). Aire controls the differentiation program of thymic epithelial cells in the medulla for the establishment of self-tolerance. J Exp Med 205, 2827–2838.Google Scholar
  124. Zhang, B., Wang, Z., Ding, J., Peterson, P., Gunning, W.T., and Ding, H.F. (2006). NF-kappaB2 is required for the control of autoimmunity by regulating the development of medullary thymic epithelial cells. J Biol Chem 281, 38617–38624.Google Scholar
  125. Zhang, L., Sun, L., and Zhao, Y. (2007). Thymic epithelial progenitor cells and thymus regeneration: an update. Cell Res 17, 50–55.Google Scholar
  126. Zhu, M., Brown, N.K., and Fu, Y.X. (2010). Direct and indirect roles of the LTbetaR pathway in central tolerance induction. Trends Immunol 31, 325–331.Google Scholar
  127. Zhu, M., Chin, R.K., Christiansen, P.A., Lo, J.C., Liu, X., Ware, C., Siebenlist, U., and Fu, Y.X. (2006). NF-kappaB2 is required for the establishment of central tolerance through an Aire-dependent pathway. J Clin Invest 116, 2964–2971.Google Scholar
  128. Zhu, M., and Fu, Y. (2010). The complicated role of NF-kappaB in T-cell selection. Cell Mol Immunol 7, 89–93.Google Scholar
  129. Zook, E.C., Krishack, P.A., Zhang, S., Zeleznik-Le, N.J., Firulli, A.B., Witte, P.L., and Le, P.T. (2011). Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells. Blood 118, 5723–5731.Google Scholar
  130. Zuklys, S., Mayer, C.E., Zhanybekova, S., Stefanski, H.E., Nusspaumer, G., Gill, J., Barthlott, T., Chappaz, S., Nitta, T., Dooley, J., et al. (2012). MicroRNAs control the maintenance of thymic epithelia and their competence for T lineage commitment and thymocyte selection. J Immunol 189, 3894–3904.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of ZoologyChinese Academy of SciencesBeijingChina

Personalised recommendations