Protein & Cell

, Volume 4, Issue 4, pp 248–250 | Cite as

The newly emerged SARS-Like coronavirus HCoV-EMC also has an “Achilles’ heel”: current effective inhibitor targeting a 3C-like protease

  • Zhilin Ren
  • Liming Yan
  • Ning Zhang
  • Yu Guo
  • Cheng Yang
  • Zhiyong Lou
  • Zihe Rao
Perspective Protein & Cell

Supplementary material

13238_2013_2841_MOESM1_ESM.pdf (269 kb)
Supplementary material, approximately 269 KB.

References

  1. Anand, K., Palm, G.J., Mesters, J.R., Siddell, S.G., Ziebuhr, J., et al. (2002). Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO J 21, 3213–3224.CrossRefGoogle Scholar
  2. Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., and Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science 300, 1763–1767.CrossRefGoogle Scholar
  3. Lau, S.K., Li, K.S., Tsang, A.K., Shek, C.T., Wang, M., et al. (2012). Recent transmission of a novel alphacoronavirus, bat coronavirus HKU10, from Leschenault’s Rousettes to Pomona leaf-nosed bats: first evidence of interspecies transmission of coronavirus between bats of different suborders. J Virol 86, 11906–11918.CrossRefGoogle Scholar
  4. Lee, C.C., Kuo, C.J., Ko, T.P., Hsu, M.F., Tsui, Y.C., et al. (2009). Structural basis of inhibition specificities of 3C and 3C-like proteases by zinc-coordinating and pepti-domimetic compounds. J Biol Chem 284, 7646–7655.CrossRefGoogle Scholar
  5. Li, S., Zhao, Q., Zhang, Y., Zhang, Y., Bartlam, M., et al. (2010). New nsp8 isoform suggests mechanism for tuning viral RNA synthesis. Protein Cell 1, 198–204.CrossRefGoogle Scholar
  6. Liang, P.H. (2006). Characterization and inhibition of SARS-coronavirus main protease. Curr Top Med Chem 6, 361–376.CrossRefGoogle Scholar
  7. Shie, J.J., Fang, J.M., Kuo, T.H., Kuo, C.J., Liang, P.H., et al. (2005). Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic alpha,betaunsaturated esters. Bioorg Med Chem 13, 5240–5252.CrossRefGoogle Scholar
  8. Xue, X., Yu, H., Yang, H., Xue, F., Wu, Z., et al. (2008). Structures of two coronavirus main proteases: implications for substrate binding and antiviral drug design. J Virol 82, 2515–2527.CrossRefGoogle Scholar
  9. Yang, H., Xie, W., Xue, X., Yang, K., Ma, J., et al. (2005). Design of wide-spectrum inhibitors targeting coronavirus main proteases. PLoS Biol 3, e324.CrossRefGoogle Scholar
  10. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., et al. (2003). The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A 100, 13190–13195.CrossRefGoogle Scholar
  11. Zhao, Q., Li, S., Xue, F., Zou, Y., Chen, C., et al. (2008). Structure of the main protease from a global infectious human coronavirus, HCoV-HKU1. J Virol 82, 8647–8655.CrossRefGoogle Scholar
  12. Ziebuhr, J., Snijder, E.J., and Gorbalenya, A.E. (2000). Virus-encoded proteinases and proteolytic processing in the Nidovirales. J Gen Virol 81, 853–879.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Zhilin Ren
    • 1
    • 2
  • Liming Yan
    • 1
  • Ning Zhang
    • 4
  • Yu Guo
    • 2
  • Cheng Yang
    • 2
    • 4
  • Zhiyong Lou
    • 1
  • Zihe Rao
    • 1
    • 2
    • 3
    • 4
  1. 1.College of Pharmacy and State Key Laboratory of Medicinal Chemical BiologyNankai UniversityTianjinChina
  2. 2.Structural Biology Laboratory and MOE Laboratory of Protein Science, School of Medicine and Life ScienceTsinghua UniversityBeijingChina
  3. 3.National Laboratory of Macromolecules, Institute of BiophysicsChinese Academy of ScienceBeijingChina
  4. 4.Emerging Infection Disease Program, High-throughput Molecular Drug Discovery CenterTianjin Joint Academy of Biomedicine and TechnologyTianjinChina

Personalised recommendations