Protein & Cell

, Volume 4, Issue 5, pp 331–341 | Cite as

EZH2, an epigenetic driver of prostate cancer



The histone methyltransferase EZH2 has been in the limelight of the field of cancer epigenetics for a decade now since it was first discovered to exhibit an elevated expression in metastatic prostate cancer. It persists to attract much scientific attention due to its important role in the process of cancer development and its potential of being an effective therapeutic target. Thus here we review the dysregulation of EZH2 in prostate cancer, its function, upstream regulators, downstream effectors, and current status of EZH2-targeting approaches. This review therefore provides a comprehensive overview of EZH2 in the context of prostate cancer.


EZH2 histone methyltransferase prostate cancer epigenetics 


  1. Arisan, S., Buyuktuncer, E.D., Palavan-Unsal, N., Caskurlu, T., Cakir, O.O., and Ergenekon, E. (2005). Increased expression of EZH2, a polycomb group protein, in bladder carcinoma. Urol Int 75, 252–257.Google Scholar
  2. Beke, L., Nuytten, M., Van Eynde, A., Beullens, M., and Bollen, M. (2007). The gene encoding the prostatic tumor suppressor PSP94 is a target for repression by the Polycomb group protein EZH2. Oncogene 26, 4590–4595.Google Scholar
  3. Berezovska, O.P., Glinskii, A.B., Yang, Z., Li, X.M., Hoffman, R.M., and Glinsky, G.V. (2006). Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle 5, 1886–1901.Google Scholar
  4. Berry, W., Dakhil, S., Modiano, M., Gregurich, M., and Asmar, L. (2002). Phase III study of mitoxantrone plus low dose prednisone versus low dose prednisone alone in patients with asymptomatic hormone refractory prostate cancer. J Urol 168, 2439–2443.Google Scholar
  5. Bhalla, K.N. (2005). Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23, 3971–3993.Google Scholar
  6. Boyer, L.A., Plath, K., Zeitlinger, J., Brambrink, T., Medeiros, L.A., Lee, T.I., Levine, S.S., Wernig, M., Tajonar, A., Ray, M.K., et al. (2006). Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.Google Scholar
  7. Bracken, A.P., Pasini, D., Capra, M., Prosperini, E., Colli, E., and Helin, K. (2003). EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J 22, 5323–5335.Google Scholar
  8. Butler, L.M., Agus, D.B., Scher, H.I., Higgins, B., Rose, A., Cordon-Cardo, C., Thaler, H.T., Rifkind, R.A., Marks, P.A., and Richon, V.M. (2000). Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses the growth of prostate cancer cells in vitroand in vivo. Cancer Res 60, 5165–5170.Google Scholar
  9. Cao, P., Deng, Z., Wan, M., Huang, W., Cramer, S.D., Xu, J., Lei, M., and Sui, G. (2010). MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1alpha/HIF-1beta. Mol Cancer 9, 108.Google Scholar
  10. Cao, Q., Mani, R.S., Ateeq, B., Dhanasekaran, S.M., Asangani, I.A., Prensner, J.R., Kim, J.H., Brenner, J.C., Jing, X., Cao, X., et al. (2011). Coordinated regulation of polycomb group complexes through microRNAs in cancer. Cancer Cell 20, 187–199.Google Scholar
  11. Cao, Q., Yu, J., Dhanasekaran, S.M., Kim, J.H., Mani, R.S., Tomlins, S.A., Mehra, R., Laxman, B., Cao, X., Yu, J., et al. (2008). Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene 27, 7274–7284.Google Scholar
  12. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043.Google Scholar
  13. Caretti, G., Di Padova, M., Micales, B., Lyons, G.E., and Sartorelli, V. (2004). The Polycomb Ezh2 methyltransferase regulates muscle gene expression and skeletal muscle differentiation. Genes Dev 18, 2627–2638.Google Scholar
  14. Center, M., Siegel, R., and Ahmedin, J. (2011). Global Cancer Facts & Figures 2nd Edition, A.C. Society, ed. (Atlanta, American Cancer Society).Google Scholar
  15. Cha, T.L., Zhou, B.P., Xia, W., Wu, Y., Yang, C.C., Chen, C.T., Ping, B., Otte, A.P., and Hung, M.C. (2005). Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in histone H3. Science 310, 306–310.Google Scholar
  16. Chang, C.J., Yang, J.Y., Xia, W., Chen, C.T., Xie, X., Chao, C.H., Woodward, W.A., Hsu, J.M., Hortobagyi, G.N., and Hung, M.C. (2011). EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-beta-catenin signaling. Cancer Cell 19, 86–100.Google Scholar
  17. Chang, F.R., Hwang, T.L., Yang, Y.L., Li, C.E., Wu, C.C., Issa, H.H., Hsieh, W.B., and Wu, Y.C. (2006). Anti-inflammatory and cytotoxic diterpenes from formosan Polyalthia longifolia var. pendula. Planta Med 72, 1344–1347.Google Scholar
  18. Chang, T.C., Yu, D., Lee, Y.S., Wentzel, E.A., Arking, D.E., West, K.M., Dang, C.V., Thomas-Tikhonenko, A., and Mendell, J.T. (2008). Widespread microRNA repression by Myc contributes to tumorigenesis. Nature Genet 40, 43–50.Google Scholar
  19. Chase, A., and Cross, N.C. (2011). Aberrations of EZH2 in cancer. Clin Cancer Research 17, 2613–2618.Google Scholar
  20. Chen, H., Tu, S.W., and Hsieh, J.T. (2005). Down-regulation of human DAB2IP gene expression mediated by polycomb Ezh2 complex and histone deacetylase in prostate cancer. J Biol Chem 280, 22437–22444.Google Scholar
  21. Christman, J.K. (2002). 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21, 5483–5495.Google Scholar
  22. Coulombe, R.A., Jr., Sharma, R.P., and Huggins, J.W. (1995). Pharmacokinetics of the antiviral agent 3-deazaneplanocin A. Eur J Drug Metab Pharmacokinet 20, 197–202.Google Scholar
  23. Crea, F., Hurt, E.M., Mathews, L.A., Cabarcas, S.M., Sun, L., Marquez, V.E., Danesi, R., and Farrar, W.L. (2011). Pharmacologic disruption of Polycomb Repressive Complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 10, 40.Google Scholar
  24. Czermin, B., Melfi, R., McCabe, D., Seitz, V., Imhof, A., and Pirrotta, V. (2002). Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196.Google Scholar
  25. Dang, C.V., O’Donnell, K.A., Zeller, K.I., Nguyen, T., Osthus, R.C., and Li, F. (2006). The c-Myc target gene network. Semin Cancer Biol 16, 253–264.Google Scholar
  26. Denmeade, S.R., and Isaacs, J.T. (2002). A history of prostate cancer treatment. Nature reviews. Cancer 2, 389–396.Google Scholar
  27. Diaz, E., Machutta, C.A., Chen, S., Jiang, Y., Nixon, C., Hofmann, G., Key, D., Sweitzer, S., Patel, M., Wu, Z., et al. (2012). Development and validation of reagents and assays for EZH2 peptide and nucleosome high-throughput screens. J Biomol Screen 17. 1279-1292.Google Scholar
  28. Drach, J., Lopez-Berestein, G., McQueen, T., Andreeff, M., and Mehta, K. (1993). Induction of differentiation in myeloid leukemia cell lines and acute promyelocytic leukemia cells by liposomal all-transretinoic acid. Cancer Res 53, 2100–2104.Google Scholar
  29. Du, J., Li, L., Ou, Z., Kong, C., Zhang, Y., Dong, Z., Zhu, S., Jiang, H., Shao, Z., Huang, B., et al. (2012). FOXC1, a target of polycomb, inhibits metastasis of breast cancer cells. Breast Cancer Res Treat 131, 65–73.Google Scholar
  30. Enokida, H., Shiina, H., Urakami, S., Igawa, M., Ogishima, T., Li, L.C., Kawahara, M., Nakagawa, M., Kane, C.J., Carroll, P.R., et al. (2005). Multigene methylation analysis for detection and staging of prostate cancer. Clinical Cancer Res 11, 6582–6588.Google Scholar
  31. Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., and Parkin, D.M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127, 2893–2917.Google Scholar
  32. Furumai, R., Matsuyama, A., Kobashi, N., Lee, K.H., Nishiyama, M., Nakajima, H., Tanaka, A., Komatsu, Y., Nishino, N., Yoshida, M., et al. (2002). FK228 (depsipeptide) as a natural prodrug that inhibits class I histone deacetylases. Cancer research 62, 4916–4921.Google Scholar
  33. Gibbons, R.J. (2005). Histone modifying and chromatin remodelling enzymes in cancer and dysplastic syndromes. Human Mol Genet 14 Spec No 1, R85–92.Google Scholar
  34. Glazer, R.I., Hartman, K.D., Knode, M.C., Richard, M.M., Chiang, P.K., Tseng, C.K., and Marquez, V.E. (1986). 3-Deazaneplanocin: a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60. Biochem Biophys Res Commun 135, 688–694.Google Scholar
  35. Gupta, R.A., Shah, N., Wang, K.C., Kim, J., Horlings, H.M., Wong, D.J., Tsai, M.C., Hung, T., Argani, P., Rinn, J.L., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071–1076.Google Scholar
  36. Hagiwara, Y., Kasukabe, T., Kaneko, Y., Niitsu, N., and Okabe-Kado, J. (2010). Ellagic acid, a natural polyphenolic compound, induces apoptosis and potentiates retinoic acid-induced differentiation of human leukemia HL-60 cells. Int J Hemat 92, 136–143.Google Scholar
  37. Higano, C.S., Schellhammer, P.F., Small, E.J., Burch, P.A., Nemunaitis, J., Yuh, L., Provost, N., and Frohlich, M.W. (2009). Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer 115, 3670–3679.Google Scholar
  38. Hoang, T.C., Bui, T.K., Taguchi, T., Watanabe, T., and Sato, Y. (2010). All-trans retinoic acid inhibits KIT activity and induces apoptosis in gastrointestinal stromal tumor GIST-T1 cell line by affecting on the expression of survivin and Bax protein. J Eep Clin Cancer Res 29, 165.Google Scholar
  39. Hoffmann, M.J., Engers, R., Florl, A.R., Otte, A.P., Muller, M., and Schulz, W.A. (2007). Expression changes in EZH2, but not in BMI-1, SIRT1, DNMT1 or DNMT3B are associated with DNA methylation changes in prostate cancer. Cancer Biolo Ther 6, 1403–1412.Google Scholar
  40. Howlader, N., Noone, A.M., Krapcho, M., Neyman, N., Aminou, R., Altekruse, S.F., Kosary, C.L., Ruhl, L., Tatalovich, Z., Cho, H., et al. (2011). SEER Cancer Statistics Review, 1975–2009 (National Cancer Institute).Google Scholar
  41. Hussain, M., Rao, M., Humphries, A.E., Hong, J.A., Liu, F., Yang, M., Caragacianu, D., and Schrump, D.S. (2009). Tobacco smoke induces polycomb-mediated repression of Dickkopf-1 in lung cancer cells. Cancer Res 69, 3570–3578.Google Scholar
  42. Kantoff, P.W., Higano, C.S., Shore, N.D., Berger, E.R., Small, E.J., Penson, D.F., Redfern, C.H., Ferrari, A.C., Dreicer, R., Sims, R.B., et al. (2010a). Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New Eng J Med 363, 411–422.Google Scholar
  43. Kantoff, P.W., Schuetz, T.J., Blumenstein, B.A., Glode, L.M., Bilhartz, D.L., Wyand, M., Manson, K., Panicali, D.L., Laus, R., Schlom, J., et al. (2010b). Overall survival analysis of a phase II randomized controlled trial of a Poxviral-based PSA-targeted immunotherapy in metastatic castration-resistant prostate cancer. J Clin Oncol 28, 1099–1105.Google Scholar
  44. Kerppola, T.K. (2009). Polycomb group complexes—many combinations, many functions. Trends Cell Biol 19, 692–704.Google Scholar
  45. Kleer, C.G., Cao, Q., Varambally, S., Shen, R., Ota, I., Tomlins, S.A., Ghosh, D., Sewalt, R.G., Otte, A.P., Hayes, D.F., et al. (2003). EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci U S A 100, 11606–11611.Google Scholar
  46. Knudsen, B.S., and Vasioukhin, V. (2010). Mechanisms of prostate cancer initiation and progression. Adv Cancer Res 109, 1–50.Google Scholar
  47. Koh, C.M., Iwata, T., Zheng, Q., Bethel, C., Yegnasubramanian, S., and De Marzo, A.M. (2011). Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget 2, 669–683.Google Scholar
  48. Kong, D., Heath, E., Chen, W., Cher, M.L., Powell, I., Heilbrun, L., Li, Y., Ali, S., Sethi, S., Hassan, O., et al. (2012). Loss of let-7 upregulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM. PloS One 7, e33729.Google Scholar
  49. Kumar-Sinha, C., Tomlins, S.A., and Chinnaiyan, A.M. (2008). Recurrent gene fusions in prostate cancer. Nature reviews. Cancer 8, 497–511.Google Scholar
  50. Lai, M.T., Yang, C.C., Lin, T.Y., Tsai, F.J., and Chen, W.C. (2008). Depsipeptide (FK228) inhibits growth of human prostate cancer cells. Urol Oncol 26, 182–189.Google Scholar
  51. Landeira, D., and Fisher, A.G. (2011). Inactive yet indispensable: the tale of Jarid2. Trends Cell Biol 21, 74–80.Google Scholar
  52. Lassi, K., and Dawson, N.A. (2009). Emerging therapies in castrateresistant prostate cancer. Curr Opinion Oncol 21, 260–265.Google Scholar
  53. Lee, J., Son, M.J., Woolard, K., Donin, N.M., Li, A., Cheng, C.H., Kotliarova, S., Kotliarov, Y., Walling, J., Ahn, S., et al. (2008). Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 13, 69–80.Google Scholar
  54. Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M., Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K., et al. (2006). Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313.Google Scholar
  55. Leeb, M., Pasini, D., Novatchkova, M., Jaritz, M., Helin, K., and Wutz, A. (2010). Polycomb complexes act redundantly to repress genomic repeats and genes. Genes Dev 24, 265–276.Google Scholar
  56. Li, L.C., Okino, S.T., and Dahiya, R. (2004). DNA methylation in prostate cancer. Biochim Biophys Acta 1704, 87–102.Google Scholar
  57. Lin, Y.H., Lee, C.C., Chang, F.R., Chang, W.H., Wu, Y.C., and Chang, J.G. (2011). 16-hydroxycleroda-3,13-dien-15,16-olide regulates the expression of histone-modifying enzymes PRC2 complex and induces apoptosis in CML K562 cells. Life Sci 89, 886–895.Google Scholar
  58. Liu, Z., Ren, G., Shangguan, C., Guo, L., Dong, Z., Li, Y., Zhang, W., Zhao, L., Hou, P., Zhang, Y., et al. (2012). ATRA inhibits the proliferation of DU145 prostate cancer cells through reducing the methylation level of HOXB13 gene. PloS One 7, e40943.Google Scholar
  59. Lu, C., Han, H.D., Mangala, L.S., Ali-Fehmi, R., Newton, C.S., Ozbun, L., Armaiz-Pena, G.N., Hu, W., Stone, R.L., Munkarah, A., et al. (2010). Regulation of tumor angiogenesis by EZH2. Cancer Cell 18, 185–197.Google Scholar
  60. Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834–838.Google Scholar
  61. Matsukawa, Y., Semba, S., Kato, H., Ito, A., Yanagihara, K., and Yokozaki, H. (2006). Expression of the enhancer of zeste homolog 2 is correlated with poor prognosis in human gastric cancer. Cancer Sci 97, 484–491.Google Scholar
  62. McCabe, M.T., Ott, H.M., Ganji, G., Korenchuk, S., Thompson, C., Van Aller, G.S., Liu, Y., Graves, A.P., Iii, A.D., Diaz, E., et al. (2012). EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations. Nature.Google Scholar
  63. Meyer, N., and Penn, L.Z. (2008). Reflecting on 25 years with MYC. Nature Rev Cancer 8, 976–990.Google Scholar
  64. Min, J., Zaslavsky, A., Fedele, G., McLaughlin, S.K., Reczek, E.E., De Raedt, T., Guney, I., Strochlic, D.E., Macconaill, L.E., Beroukhim, R., et al. (2010). An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB. Nature Med 16, 286–294.Google Scholar
  65. Morey, L., and Helin, K. (2010). Polycomb group protein-mediated repression of transcription. Trends Bio Sci 35, 323–332.Google Scholar
  66. Morin, R.D., Johnson, N.A., Severson, T.M., Mungall, A.J., An, J., Goya, R., Paul, J.E., Boyle, M., Woolcock, B.W., Kuchenbauer, F., et al. (2010). Somatic mutations altering EZH2 (Tyr641) in follicular and diffuse large B-cell lymphomas of germinal-center origin. Nature genetics 42, 181–185.Google Scholar
  67. Muller, J., Hart, C.M., Francis, N.J., Vargas, M.L., Sengupta, A., Wild, B., Miller, E.L., O’Connor, M.B., Kingston, R.E., and Simon, J.A. (2002). Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208.Google Scholar
  68. Nelson, W.G., De Marzo, A.M., and Yegnasubramanian, S. (2009). Epigenetic alterations in human prostate cancers. Endocrinology 150, 3991–4002.Google Scholar
  69. Ozen, M., Creighton, C.J., Ozdemir, M., and Ittmann, M. (2008). Widespread deregulation of microRNA expression in human prostate cancer. Oncogene 27, 1788–1793.Google Scholar
  70. Pienta, K.J., and Bradley, D. (2006). Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res 12, 1665–1671.Google Scholar
  71. Pietersen, A.M., and van Lohuizen, M. (2008). Stem cell regulation by polycomb repressors: postponing commitment. Current opinion in cell biology 20, 201–207.Google Scholar
  72. Porkka, K.P., Pfeiffer, M.J., Waltering, K.K., Vessella, R.L., Tammela, T.L., and Visakorpi, T. (2007). MicroRNA expression profiling in prostate cancer. Cancer Res 67, 6130–6135.Google Scholar
  73. Prensner, J.R., Iyer, M.K., Balbin, O.A., Dhanasekaran, S.M., Cao, Q., Brenner, J.C., Laxman, B., Asangani, I.A., Grasso, C.S., Kominsky, H.D., et al. (2011). Transcriptome sequencing across a prostate cancer cohort identifies PCAT-1, an unannotated lincRNA implicated in disease progression. Nature Biotech 29, 742–749.Google Scholar
  74. Raman, J.D., Mongan, N.P., Tickoo, S.K., Boorjian, S.A., Scherr, D.S., and Gudas, L.J. (2005). Increased expression of the polycomb group gene, EZH2, in transitional cell carcinoma of the bladder. Clin Cancer Res 11, 8570–8576.Google Scholar
  75. Rea, S., Eisenhaber, F., O’Carroll, D., Strahl, B.D., Sun, Z.W., Schmid, M., Opravil, S., Mechtler, K., Ponting, C.P., Allis, C.D., et al. (2000). Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599.Google Scholar
  76. Ren, G., Baritaki, S., Marathe, H., Feng, J., Park, S., Beach, S., Bazeley, P.S., Beshir, A.B., Fenteany, G., Mehra, R., et al. (2012). Polycomb protein EZH2 regulates tumor invasion via the transcriptional repression of the metastasis suppressor RKIP in breast and prostate cancer. Cancer Res 72, 3091–3104.Google Scholar
  77. Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by noncoding RNAs. Cell 129, 1311–1323.Google Scholar
  78. Saramaki, O.R., Tammela, T.L., Martikainen, P.M., Vessella, R.L., and Visakorpi, T. (2006). The gene for polycomb group protein enhancer of zeste homolog 2 (EZH2) is amplified in late-stage prostate cancer. Genes Chrom Cancer 45, 639–645.Google Scholar
  79. Sauvageau, M., and Sauvageau, G. (2010). Polycomb group proteins: multi-faceted regulators of somatic stem cells and cancer. Cell Stem Cell 7, 299–313.Google Scholar
  80. Schulz, W.A., and Hoffmann, M.J. (2009). Epigenetic mechanisms in the biology of prostate cancer. Semin Cancer Biol 19, 172–180.Google Scholar
  81. Shapiro, D., and Tareen, B. (2012). Current and emerging treatments in the management of castration-resistant prostate cancer. Exp Rev Anticancer Ther12, 951–964.Google Scholar
  82. Shin, Y.J., and Kim, J.H. (2012). The role of EZH2 in the regulation of the activity of matrix metalloproteinases in prostate cancer cells. PloS One 7, e30393.Google Scholar
  83. Simon, J.A., and Tamkun, J.W. (2002). Programming off and on states in chromatin: mechanisms of Polycomb and trithorax group complexes. Curr Opin Genet Dev 12, 210–218.Google Scholar
  84. Sneeringer, C.J., Scott, M.P., Kuntz, K.W., Knutson, S.K., Pollock, R.M., Richon, V.M., and Copeland, R.A. (2010). Coordinated activities of wild-type plus mutant EZH2 drive tumor-associated hypertrimethylation of lysine 27 on histone H3 (H3K27) in human B-cell lymphomas. Proc Natl Acad Sci U S A 107, 20980–20985.Google Scholar
  85. Sparmann, A., and van Lohuizen, M. (2006). Polycomb silencers control cell fate, development and cancer. Nature Rev Cancer 6, 846–856.Google Scholar
  86. Squazzo, S.L., O’Geen, H., Komashko, V.M., Krig, S.R., Jin, V.X., Jang, S.W., Margueron, R., Reinberg, D., Green, R., and Farnham, P.J. (2006). Suz12 binds to silenced regions of the genome in a cell-type-specific manner. Genome Res 16, 890–900.Google Scholar
  87. Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41–45.Google Scholar
  88. Sudo, T., Utsunomiya, T., Mimori, K., Nagahara, H., Ogawa, K., Inoue, H., Wakiyama, S., Fujita, H., Shirouzu, K., and Mori, M. (2005). Clinicopathological significance of EZH2 mRNA expression in patients with hepatocellular carcinoma. Brit J Cancer 92, 1754–1758.Google Scholar
  89. Sun, F., Li, J., Yu, Q., and Chan, E. (2012). Loading 3-deazaneplanocin A into pegylated unilamellar liposomes by forming transient phenylboronic acid-drug complex and its pharmacokinetic features in Sprague-Dawley rats. Europ J Pharm Biopharm 80, 323–331.Google Scholar
  90. Tan, J., Yang, X., Zhuang, L., Jiang, X., Chen, W., Lee, P.L., Karuturi, R.K., Tan, P.B., Liu, E.T., and Yu, Q. (2007). Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev 21, 1050–1063.Google Scholar
  91. Tang, X., Milyavsky, M., Shats, I., Erez, N., Goldfinger, N., and Rotter, V. (2004). Activated p53 suppresses the histone methyltransferase EZH2 gene. Oncogene 23, 5759–5769.Google Scholar
  92. Tsai, M.C., Manor, O., Wan, Y., Mosammaparast, N., Wang, J.K., Lan, F., Shi, Y., Segal, E., and Chang, H.Y. (2010). Long noncoding RNA as modular scaffold of histone modification complexes. Science 329, 689–693.Google Scholar
  93. van der Vlag, J., and Otte, A.P. (1999). Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation. Nature Genet 23, 474–478.Google Scholar
  94. Van Dessel, N., Beke, L., Gornemann, J., Minnebo, N., Beullens, M., Tanuma, N., Shima, H., Van Eynde, A., and Bollen, M. (2010). The phosphatase interactor NIPP1 regulates the occupancy of the histone methyltransferase EZH2 at Polycomb targets. Nucleic Acids Res 38, 7500–7512.Google Scholar
  95. Varambally, S., Cao, Q., Mani, R.S., Shankar, S., Wang, X., Ateeq, B., Laxman, B., Cao, X., Jing, X., Ramnarayanan, K., et al. (2008). Genomic loss of microRNA-101 leads to overexpression of histone methyltransferase EZH2 in cancer. Science 322, 1695–1699.Google Scholar
  96. Varambally, S., Dhanasekaran, S.M., Zhou, M., Barrette, T.R., Kumar-Sinha, C., Sanda, M.G., Ghosh, D., Pienta, K.J., Sewalt, R.G., Otte, A.P., et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624–629.Google Scholar
  97. Vire, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J.M., et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874.Google Scholar
  98. Volinia, S., Calin, G.A., Liu, C.G., Ambs, S., Cimmino, A., Petrocca, F., Visone, R., Iorio, M., Roldo, C., Ferracin, M., et al. (2006). A micro-RNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103, 2257–2261.Google Scholar
  99. Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S., and Zhang, Y. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878.Google Scholar
  100. Watanabe, H., Soejima, K., Yasuda, H., Kawada, I., Nakachi, I., Yoda, S., Naoki, K., and Ishizaka, A. (2008). Deregulation of histone lysine methyltransferases contributes to oncogenic transformation of human bronchoepithelial cells. Cancer Cell international 8, 15.Google Scholar
  101. Weikert, S., Christoph, F., Kollermann, J., Muller, M., Schrader, M., Miller, K., and Krause, H. (2005). Expression levels of the EZH2 polycomb transcriptional repressor correlate with aggressiveness and invasive potential of bladder carcinomas. Int J Mol Med 16, 349–353.Google Scholar
  102. Wilkinson, F.H., Park, K., and Atchison, M.L. (2006). Polycomb recruitment to DNA in vivo by the YY1 REPO domain. Proc Natl Acad Sci U S A 103, 19296–19301.Google Scholar
  103. Xu, W.S., Parmigiani, R.B., and Marks, P.A. (2007). Histone deacetylase inhibitors: molecular mechanisms of action. Oncogene 26, 5541–5552.Google Scholar
  104. Yegnasubramanian, S., Kowalski, J., Gonzalgo, M.L., Zahurak, M., Piantadosi, S., Walsh, P.C., Bova, G.S., De Marzo, A.M., Isaacs, W.B., and Nelson, W.G. (2004). Hypermethylation of CpG islands in primary and metastatic human prostate cancer. Cancer Res 64, 1975–1986.Google Scholar
  105. Yu, J., Cao, Q., Mehra, R., Laxman, B., Yu, J., Tomlins, S.A., Creighton, C.J., Dhanasekaran, S.M., Shen, R., Chen, G., et al. (2007a). Integrative genomics analysis reveals silencing of beta-adrenergic signaling by polycomb in prostate cancer. Cancer Cell 12, 419–431.Google Scholar
  106. Yu, J., Cao, Q., Yu, J., Wu, L., Dallol, A., Li, J., Chen, G., Grasso, C., Cao, X., Lonigro, R.J., et al. (2010a). The neuronal repellent SLIT2 is a target for repression by EZH2 in prostate cancer. Oncogene 29, 5370–5380.Google Scholar
  107. Yu, J., Yu, J., Mani, R.S., Cao, Q., Brenner, C.J., Cao, X., Wang, X., Wu, L., Li, J., Hu, M., et al. (2010b). An integrated network of androgen receptor, polycomb, and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17, 443–454.Google Scholar
  108. Yu, J., Yu, J., Rhodes, D.R., Tomlins, S.A., Cao, X., Chen, G., Mehra, R., Wang, X., Ghosh, D., Shah, R.B., et al. (2007b). A polycomb repression signature in metastatic prostate cancer predicts cancer outcome. Cancer research 67, 10657–10663.Google Scholar
  109. Zhang, X.K. (2002). Vitamin A and apoptosis in prostate cancer. Endocr Relat Cancer 9, 87–102.Google Scholar
  110. Zhao, J.C., Yu, J., Runkle, C., Wu, L., Hu, M., Wu, D., Liu, J.S., Wang, Q., Qin, Z.S., and Yu, J. (2012). Cooperation between Polycomb and androgen receptor during oncogenic transformation. Genome Res 22, 322–331.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Division of Hematology/Oncology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicagoUSA

Personalised recommendations