Protein & Cell

, Volume 4, Issue 3, pp 176–185 | Cite as

NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer



Although links between cancer and inflammation were firstly proposed in the nineteenth century, the molecular mechanism has not yet been clearly understood. Epidemiological studies have identified chronic infections and inflammation as major risk factors for various types of cancer. NF-κB transcription factors and the signaling pathways are central coordinators in innate and adaptive immune responses. STAT3 regulates the expression of a variety of genes in response to cellular stimuli, and thus plays a key role in cell growth and apoptosis. Recently, roles of NF-κB and STAT3 in colon, gastric and liver cancers have been extensively investigated. The activation and interaction between STAT3 and NF-κB play vital roles in control of the communication between cancer cells and inflammatory cells. NF-κB and STAT3 are two major factors controlling the ability of pre-neoplastic and malignant cells to resist apoptosis-based tumor-surveillance and regulating tumor angiogenesis and invasiveness. Understanding the molecular mechanisms of NF-κB and STAT3 cooperation in cancer will offer opportunities for the design of new chemo-preventive and chemotherapeutic approaches.


inflammation tumorigenesis NF-κB STAT3 


  1. Aaronson, D.S., and Horvath, C.M. (2002). A road map for those who don’t know JAK-STAT. Science 296, 1653–1655.CrossRefGoogle Scholar
  2. Akaishi, H., Takeda, K., Kaisho, T., Shineha, R., Satomi, S., Takeda, J., and Akira, S. (1998). Defective IL-2-mediated IL-2 receptor alpha chain expression in Stat3-deficient T lymphocytes. Int Immunol 10, 1747–1751.CrossRefGoogle Scholar
  3. Atkinson, G.P., Nozell, S.E., and Benveniste, E.T. (2010). NF-kappaB and STAT3 signaling in glioma: targets for future therapies. Expert Rev Neurother 10, 575–586.CrossRefGoogle Scholar
  4. Baby, J., Pickering, B.F., Vashisht Gopal, Y.N., and Van Dyke, M.W. (2007). Constitutive and inducible nuclear factor-kappaB in immortalized normal human bronchial epithelial and non-small cell lung cancer cell lines. Cancer Lett 255, 85–94.CrossRefGoogle Scholar
  5. Balkwill, F., and Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet 357, 539–545.CrossRefGoogle Scholar
  6. Basu, S., Rosenzweig, K.R., Youmell, M., and Price, B.D. (1998). The DNA-dependent protein kinase participates in the activation of NF kappa B following DNA damage. Biochem Biophys Res Commun 247, 79–83.CrossRefGoogle Scholar
  7. Beg, A.A., Sha, W.C., Bronson, R.T., Ghosh, S., and Baltimore, D. (1995). Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376, 167–170.CrossRefGoogle Scholar
  8. Bhoj, V.G., and Chen, Z.J. (2009). Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437.CrossRefGoogle Scholar
  9. Bollrath, J., and Greten, F.R. (2009). IKK/NF-kappaB and STAT3 pathways: central signalling hubs in inflammation-mediated tumour promotion and metastasis. EMBO Rep 10, 1314–1319.CrossRefGoogle Scholar
  10. Bonizzi, G., Bebien, M., Otero, D.C., Johnson-Vroom, K.E., Cao, Y., Vu, D., Jegga, A.G., Aronow, B.J., Ghosh, G., Rickert, R.C., et al. (2004). Activation of IKKalpha target genes depends on recognition of specific kappaB binding sites by RelB:p52 dimers. Embo J 23, 4202–4210.CrossRefGoogle Scholar
  11. Bowman, T., Broome, M.A., Sinibaldi, D., Wharton, W., Pledger, W.J., Sedivy, J.M., Irby, R., Yeatman, T., Courtneidge, S.A., and Jove, R. (2001). Stat3-mediated Myc expression is required for Src transformation and PDGF-induced mitogenesis. Proc Natl Acad Sci U S A 98, 7319–7324.CrossRefGoogle Scholar
  12. Caamano, J.H., Rizzo, C.A., Durham, S.K., Barton, D.S., Raventos-Suarez, C., Snapper, C.M., and Bravo, R. (1998). Nuclear factor (NF)-kappa B2 (p100/p52) is required for normal splenic microarchitecture and B cell-mediated immune responses. J Exp Med 187, 185–196.CrossRefGoogle Scholar
  13. Colotta, F., Allavena, P., Sica, A., Garlanda, C., and Mantovani, A. (2009). Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081.CrossRefGoogle Scholar
  14. Dan, H.C., Cooper, M.J., Cogswell, P.C., Duncan, J.A., Ting, J.P., and Baldwin, A.S. (2008). Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev 22, 1490–1500.CrossRefGoogle Scholar
  15. de Visser, K.E., Eichten, A., and Coussens, L.M. (2006). Paradoxical roles of the immune system during cancer development. Nat Rev Cancer 6, 24–37.CrossRefGoogle Scholar
  16. Dunn, G.P., Old, L.J., and Schreiber, R.D. (2004). The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21, 137–148.CrossRefGoogle Scholar
  17. Durbin, J.E., Hackenmiller, R., Simon, M.C., and Levy, D.E. (1996). Targeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 84, 443–450.CrossRefGoogle Scholar
  18. Eferl, R., and Wagner, E.F. (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 3, 859–868.CrossRefGoogle Scholar
  19. Faux, S.P., Tai, T., Thorne, D., Xu, Y., Breheny, D., and Gaca, M. (2009). The role of oxidative stress in the biological responses of lung epithelial cells to cigarette smoke. Biomarkers 14 Suppl 1, 90–96.CrossRefGoogle Scholar
  20. Gao, S.P., Mark, K.G., Leslie, K., Pao, W., Motoi, N., Gerald, W.L., Travis, W.D., Bornmann, W., Veach, D., Clarkson, B., et al. (2007). Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Invest 117, 3846–3856.CrossRefGoogle Scholar
  21. Gilmore, T.D., Kalaitzidis, D., Liang, M.C., and Starczynowski, D.T. (2004). The c-Rel transcription factor and B-cell proliferation: a deal with the devil. Oncogene 23, 2275–2286.CrossRefGoogle Scholar
  22. Gough, D.J., Corlett, A., Schlessinger, K., Wegrzyn, J., Larner, A.C., and Levy, D.E. (2009). Mitochondrial STAT3 supports Ras-dependent oncogenic transformation. Science 324, 1713–1716.CrossRefGoogle Scholar
  23. Grivennikov, S., Karin, E., Terzic, J., Mucida, D., Yu, G.Y., Vallabhapurapu, S., Scheller, J., Rose-John, S., Cheroutre, H., Eckmann, L., et al. (2009). IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15, 103–113.CrossRefGoogle Scholar
  24. Grivennikov, S., and Karin, M. (2008). Autocrine IL-6 signaling: a key event in tumorigenesis? Cancer Cell 13, 7–9.CrossRefGoogle Scholar
  25. Grivennikov, S.I., Greten, F.R., and Karin, M. (2010). Immunity, inflammation, and cancer. Cell 140, 883–899.CrossRefGoogle Scholar
  26. Grivennikov, S.I., and Karin, M. Dangerous liaisons: STAT3 and NFkappaB collaboration and crosstalk in cancer. Cytokine Growth Factor Rev 21, 11–19.Google Scholar
  27. Grivennikov, S.I., and Karin, M. Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 20, 65–71.Google Scholar
  28. Grusby, M.J. (1997). Stat4- and Stat6-deficient mice as models for manipulating T helper cell responses. Biochem Soc Trans 25, 359–360.CrossRefGoogle Scholar
  29. Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57–70.CrossRefGoogle Scholar
  30. He, G., and Karin, M. (2011). NF-kappaB and STAT3 — key players in liver inflammation and cancer. Cell Res 21, 159–168.CrossRefGoogle Scholar
  31. Helbig, G., Christopherson, K.W., 2nd, Bhat-Nakshatri, P., Kumar, S., Kishimoto, H., Miller, K.D., Broxmeyer, H.E., and Nakshatri, H. (2003). NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278, 21631–21638.CrossRefGoogle Scholar
  32. Hoelzer, J.D., Franklin, R.B., and Bose, H.R., Jr. (1979). Transformation by reticuloendotheliosis virus: development of a focus assay and isolation of a nontransforming virus. Virology 93, 20–30.CrossRefGoogle Scholar
  33. Hoffmann, A., and Baltimore, D. (2006). Circuitry of nuclear factor kappaB signaling. Immunol Rev 210, 171–186.CrossRefGoogle Scholar
  34. Horvath, C.M., Wen, Z., and Darnell, J.E., Jr. (1995). A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev 9, 984–994.CrossRefGoogle Scholar
  35. Huber, M.A., Azoitei, N., Baumann, B., Grunert, S., Sommer, A., Pehamberger, H., Kraut, N., Beug, H., and Wirth, T. (2004). NFkappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114, 569–581.CrossRefGoogle Scholar
  36. Hursting, S.D., and Berger, N.A. (2010). Energy balance, host-related factors, and cancer progression. J Clin Oncol 28, 4058–4065.CrossRefGoogle Scholar
  37. Hussain, S.P., and Harris, C.C. (2007). Inflammation and cancer: an ancient link with novel potentials. Int J Cancer 121, 2373–2380.CrossRefGoogle Scholar
  38. Kaplan, M.H., Sun, Y.L., Hoey, T., and Grusby, M.J. (1996). Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 382, 174–177.CrossRefGoogle Scholar
  39. Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441, 431–436.CrossRefGoogle Scholar
  40. Khasawneh, J., Schulz, M.D., Walch, A., Rozman, J., Hrabe de Angelis, M., Klingenspor, M., Buck, A., Schwaiger, M., Saur, D., Schmid, R.M., et al. (2009). Inflammation and mitochondrial fatty acid betaoxidation link obesity to early tumor promotion. Proc Natl Acad Sci U S A 106, 3354–3359.CrossRefGoogle Scholar
  41. Kida, Y., Kobayashi, M., Suzuki, T., Takeshita, A., Okamatsu, Y., Hanazawa, S., Yasui, T., and Hasegawa, K. (2005). Interleukin-1 stimulates cytokines, prostaglandin E2 and matrix metalloproteinase-1 production via activation of MAPK/AP-1 and NF-kappaB in human gingival fibroblasts. Cytokine 29, 159–168.CrossRefGoogle Scholar
  42. Kontgen, F., Grumont, R.J., Strasser, A., Metcalf, D., Li, R., Tarlinton, D., and Gerondakis, S. (1995). Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev 9, 1965–1977.CrossRefGoogle Scholar
  43. Kortylewski, M., Kujawski, M., Wang, T., Wei, S., Zhang, S., Pilon-Thomas, S., Niu, G., Kay, H., Mule, J., Kerr, W.G., et al. (2005). Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat Med 11, 1314–1321.CrossRefGoogle Scholar
  44. Kujawski, M., Kortylewski, M., Lee, H., Herrmann, A., Kay, H., and Yu, H. (2008). Stat3 mediates myeloid cell-dependent tumor angiogenesis in mice. J Clin Invest 118, 3367–3377.CrossRefGoogle Scholar
  45. Lee, D.F., Kuo, H.P., Chen, C.T., Hsu, J.M., Chou, C.K., Wei, Y., Sun, H.L., Li, L.Y., Ping, B., Huang, W.C., et al. (2007). IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130, 440–455.CrossRefGoogle Scholar
  46. Lee, H., Herrmann, A., Deng, J.H., Kujawski, M., Niu, G., Li, Z., Forman, S., Jove, R., Pardoll, D.M., and Yu, H. (2009). Persistently activated Stat3 maintains constitutive NF-kappaB activity in tumors. Cancer Cell 15, 283–293.CrossRefGoogle Scholar
  47. Lenz, G., Davis, R.E., Ngo, V.N., Lam, L., George, T.C., Wright, G.W., Dave, S.S., Zhao, H., Xu, W., Rosenwald, A., et al. (2008). Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319, 1676–1679.CrossRefGoogle Scholar
  48. Libikova, H., Pogady, J., Wiedermann, V., and Breier, S. (1975). Search for herpetic antibodies in the cerebrospinal fluid in senile dementia and mental retardation. Acta Virol 19, 493–495.Google Scholar
  49. Liu, X., Robinson, G.W., Wagner, K.U., Garrett, L., Wynshaw-Boris, A., and Hennighausen, L. (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11, 179–186.CrossRefGoogle Scholar
  50. Luo, J.L., Kamata, H., and Karin, M. (2005). IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 115, 2625–2632.CrossRefGoogle Scholar
  51. Luo, J.L., Tan, W., Ricono, J.M., Korchynskyi, O., Zhang, M., Gonias, S.L., Cheresh, D.A., and Karin, M. (2007). Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446, 690–694.CrossRefGoogle Scholar
  52. Mann, A.P., Verma, A., Sethi, G., Manavathi, B., Wang, H., Fok, J.Y., Kunnumakkara, A.B., Kumar, R., Aggarwal, B.B., and Mehta, K. (2006). Overexpression of tissue transglutaminase leads to constitutive activation of nuclear factor-kappaB in cancer cells: delineation of a novel pathway. Cancer Res 66, 8788–8795.CrossRefGoogle Scholar
  53. Mantovani, A. (2009). Cancer: Inflaming metastasis. Nature 457, 36–37.CrossRefGoogle Scholar
  54. Marusawa, H., and Chiba, T. (2010). Helicobacter pylori-induced activation-induced cytidine deaminase expression and carcinogenesis. Curr Opin Immunol 22, 442–447.CrossRefGoogle Scholar
  55. Matsumura, Y., Kobayashi, T., Ichiyama, K., Yoshida, R., Hashimoto, M., Takimoto, T., Tanaka, K., Chinen, T., Shichita, T., Wyss-Coray, T., et al. (2007). Selective expansion of foxp3-positive regulatory T cells and immunosuppression by suppressors of cytokine signaling 3-deficient dendritic cells. J Immunol 179, 2170–2179.CrossRefGoogle Scholar
  56. Meraz, M.A., White, J.M., Sheehan, K.C., Bach, E.A., Rodig, S.J., Dighe, A.S., Kaplan, D.H., Riley, J.K., Greenlund, A.C., Campbell, D., et al. (1996). Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell 84, 431–442.CrossRefGoogle Scholar
  57. Miletic, A.V., Graham, D.B., Montgrain, V., Fujikawa, K., Kloeppel, T., Brim, K., Weaver, B., Schreiber, R., Xavier, R., and Swat, W. (2007). Vav proteins control MyD88-dependent oxidative burst. Blood 109, 3360–3368.CrossRefGoogle Scholar
  58. Moore, R.J., Owens, D.M., Stamp, G., Arnott, C., Burke, F., East, N., Holdsworth, H., Turner, L., Rollins, B., Pasparakis, M., et al. (1999). Mice deficient in tumor necrosis factor-alpha are resistant to skin carcinogenesis. Nat Med 5, 828–831.CrossRefGoogle Scholar
  59. Murdoch, C., Muthana, M., Coffelt, S.B., and Lewis, C.E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8, 618–631.CrossRefGoogle Scholar
  60. Naugler, W.E., and Karin, M. (2008). NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18, 19–26.CrossRefGoogle Scholar
  61. Nguyen, D.X., Bos, P.D., and Massague, J. (2009). Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer 9, 274–284.CrossRefGoogle Scholar
  62. Nickoloff, B.J., Ben-Neriah, Y., and Pikarsky, E. (2005). Inflammation and cancer: is the link as simple as we think? J Invest Dermatol 124, x–xiv.CrossRefGoogle Scholar
  63. Osborn, L., Kunkel, S., and Nabel, G.J. (1989). Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B. Proc Natl Acad Sci U S A 86, 2336–2340.CrossRefGoogle Scholar
  64. Pan, J.S., Hong, M.Z., and Ren, J.L. (2009). Reactive oxygen species: a double-edged sword in oncogenesis. World J Gastroenterol 15, 1702–1707.CrossRefGoogle Scholar
  65. Park, C., Li, S., Cha, E., and Schindler, C. (2000). Immune response in Stat2 knockout mice. Immunity 13, 795–804.CrossRefGoogle Scholar
  66. Park, E.J., Lee, J.H., Yu, G.Y., He, G., Ali, S.R., Holzer, R.G., Osterreicher, C.H., Takahashi, H., and Karin, M. (2010). Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 140, 197–208.CrossRefGoogle Scholar
  67. Parkin, D.M. (2006). The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118, 3030–3044.CrossRefGoogle Scholar
  68. Polk, D.B., and Peek, R.M., Jr. Helicobacter pylori: gastric cancer and beyond. (2010). Nat Rev Cancer 10, 403–414.CrossRefGoogle Scholar
  69. Polyak, K., Haviv, I., and Campbell, I.G. (2009). Co-evolution of tumor cells and their microenvironment. Trends Genet 25, 30–38.CrossRefGoogle Scholar
  70. Prasad, S., Ravindran, J., and Aggarwal, B.B. (2010). NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 336, 25–37.CrossRefGoogle Scholar
  71. Psyrri, A., and DiMaio, D. (2008). Human papillomavirus in cervical and head-and-neck cancer. Nat Clin Pract Oncol 5, 24–31.CrossRefGoogle Scholar
  72. Qiao, L., Zhang, H., Yu, J., Francisco, R., Dent, P., Ebert, M.P., Rocken, C., and Farrell, G. (2006). Constitutive activation of NF-kappaB in human hepatocellular carcinoma: evidence of a cytoprotective role. Hum Gene Ther 17, 280–290.CrossRefGoogle Scholar
  73. Qin, H., Wilson, C.A., Lee, S.J., Zhao, X., and Benveniste, E.N. (2005). LPS induces CD40 gene expression through the activation of NFkappaB and STAT-1alpha in macrophages and microglia. Blood 106, 3114–3122.CrossRefGoogle Scholar
  74. Sansone, P., Storci, G., Tavolari, S., Guarnieri, T., Giovannini, C., Taffurelli, M., Ceccarelli, C., Santini, D., Paterini, P., Marcu, K.B., et al. (2007). IL-6 triggers malignant features in mammospheres from human ductal breast carcinoma and normal mammary gland. J Clin Invest 117, 3988–4002.CrossRefGoogle Scholar
  75. Schmidt, D., Textor, B., Pein, O.T., Licht, A.H., Andrecht, S., Sator-Schmitt, M., Fusenig, N.E., Angel, P., and Schorpp-Kistner, M. (2007). Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. Embo J 26, 710–719.CrossRefGoogle Scholar
  76. Sha, W.C., Liou, H.C., Tuomanen, E.I., and Baltimore, D. (1995). Targeted disruption of the p50 subunit of NF-kappa B leads to multifocal defects in immune responses. Cell 80, 321–330.CrossRefGoogle Scholar
  77. Shankaran, V., Ikeda, H., Bruce, A.T., White, J.M., Swanson, P.E., Old, L.J., and Schreiber, R.D. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 410, 1107–1111.CrossRefGoogle Scholar
  78. Smyth, M.J., Dunn, G.P., and Schreiber, R.D. (2006). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 90, 1–50.CrossRefGoogle Scholar
  79. Srinivasula, S.M., and Ashwell, J.D. (2008). IAPs: what’s in a name? Mol Cell 30, 123–135.CrossRefGoogle Scholar
  80. Staudt, L.M. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect Biol 2, a000109.Google Scholar
  81. Takahashi, H., Ogata, H., Nishigaki, R., Broide, D.H., and Karin, M. (2010). Tobacco smoke promotes lung tumorigenesis by triggering IKKbeta- and JNK1-dependent inflammation. Cancer Cell 17, 89–97.CrossRefGoogle Scholar
  82. Teglund, S., McKay, C., Schuetz, E., van Deursen, J.M., Stravopodis, D., Wang, D., Brown, M., Bodner, S., Grosveld, G., and Ihle, J.N. (1998). Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850.CrossRefGoogle Scholar
  83. Thierfelder, W.E., van Deursen, J.M., Yamamoto, K., Tripp, R.A., Sarawar, S.R., Carson, R.T., Sangster, M.Y., Vignali, D.A., Doherty, P.C., Grosveld, G.C., et al. (1996). Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 382, 171–174.CrossRefGoogle Scholar
  84. Udy, G.B., Towers, R.P., Snell, R.G., Wilkins, R.J., Park, S.H., Ram, P.A., Waxman, D.J., and Davey, H.W. (1997). Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A 94, 7239–7244.CrossRefGoogle Scholar
  85. Vallabhapurapu, S., and Karin, M. (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27, 693–733.CrossRefGoogle Scholar
  86. Waldner, M.J., and Neurath, M.F. (2009). Colitis-associated cancer: the role of T cells in tumor development. Semin Immunopathol 31, 249–256.CrossRefGoogle Scholar
  87. Wang, L., Yi, T., Zhang, W., Pardoll, D.M., and Yu, H. (2010). IL-17 enhances tumor development in carcinogen-induced skin cancer. Cancer Res 70, 10112–10120.CrossRefGoogle Scholar
  88. Weih, F., Carrasco, D., Durham, S.K., Barton, D.S., Rizzo, C.A., Ryseck, R.P., Lira, S.A., and Bravo, R. (1995). Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-kappa B/Rel family. Cell 80, 331–340.CrossRefGoogle Scholar
  89. Wu, S., Rhee, K.J., Albesiano, E., Rabizadeh, S., Wu, X., Yen, H.R., Huso, D.L., Brancati, F.L., Wick, E., McAllister, F., et al. (2009). A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med 15, 1016–1022.CrossRefGoogle Scholar
  90. Yang, J., Liao, X., Agarwal, M.K., Barnes, L., Auron, P.E., and Stark, G.R. (2007). Unphosphorylated STAT3 accumulates in response to IL-6 and activates transcription by binding to NFkappaB. Genes Dev 21, 1396–1408.CrossRefGoogle Scholar
  91. Yang, J., and Weinberg, R.A. (2008). Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell 14, 818–829.CrossRefGoogle Scholar
  92. Yang, L., Huang, J., Ren, X., Gorska, A.E., Chytil, A., Aakre, M., Carbone, D.P., Matrisian, L.M., Richmond, A., Lin, P.C., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell 13, 23–35.CrossRefGoogle Scholar
  93. Yu, H., Kortylewski, M., and Pardoll, D. (2007). Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol 7, 41–51.CrossRefGoogle Scholar
  94. Yu, H., Pardoll, D., and Jove, R. (2009). STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9, 798–809.CrossRefGoogle Scholar
  95. Yu, Z., Zhang, W., and Kone, B.C. (2002). Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. Biochem J 367, 97–105.CrossRefGoogle Scholar
  96. Zargan, J., Sajad, M., Umar, S., Naime, M., Ali, S., and Khan, H.A. (2011). Scorpion (Odontobuthus doriae) venom induces apoptosis and inhibits DNA synthesis in human neuroblastoma cells. Mol Cell Biochem 348, 173–181.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Texas Children’s Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer CenterBaylor College of MedicineHoustonUSA
  2. 2.The Methodist Hospital Research Institute and the Departments of Radiologythe Methodist HospitalHoustonUSA

Personalised recommendations