Protein & Cell

, Volume 4, Issue 3, pp 220–230 | Cite as

Dynamic roles of angiopoietin-like proteins 1, 2, 3, 4, 6 and 7 in the survival and enhancement of ex vivo expansion of bone-marrow hematopoietic stem cells

  • Shahina Akhter
  • Md. Mashiar Rahman
  • Hyun Seo Lee
  • Hyeon-Jin Kim
  • Seong-Tshool Hong
Research Article


Recent advances in hematopoietic stem cells (HSCs) expansion by growth factors including angiopoietin-like proteins (Angptls) have opened up the possibility to use HSCs in regenerative medicine. However, the unavailability of true in vitro HSCs expansion by these growth factors has limited the understanding of the cellular and molecular mechanism of HSCs expansion. Here, we report the functional role of mouse Angptls 1, 2, 3, 4, 6 and 7 and growth factors SCF, TPO, IGF-2 and FGF-1 on purified mouse bone-marrow (BM) LineageSca-1+(Lin-Sca-1+) HSCs. The recombinant retroviral transduced-CHO-S cells that secrete Angptls in serum-free medium were used alone or in combination with growth factors (SCF, TPO, IGF-2 and FGF-1). None of the Angptls stimulated HSC proliferation, enhanced or inhibited HSCs colony formation, but they did support the survival of HSCs. By contrast, any of the six Angptls together with saturating levels of growth factors dramatically stimulated a 3- to 4.5-fold net expansion of HSCs compared to stimulation with a combination of those growth factors alone. These findings lead to an understanding of the basic function of Angptls on signaling pathways for the survival as well as expansion of HSCs in the bone marrow niche.


hematopoietic stem cells angiopoietin-like proteins growth factors survival ex vivo expansion cell culture 


  1. Antonchuk, J., Sauvageau, G., and Humphries, R.K. (2002). HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109, 39–45.CrossRefGoogle Scholar
  2. Araki, H., Yoshinaga, K., Boccuni, P., Zhao, Y., Hoffman, R., and Mahmud, N. (2007). Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 109, 3570–3578.CrossRefGoogle Scholar
  3. Atala. (2009). Engineering organs. Curr Opin Biotechnol 20, 575–592.CrossRefGoogle Scholar
  4. Bryder, D., Rossi, D.J., and Weissman, I.L. (2006). Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169, 338–346.CrossRefGoogle Scholar
  5. Cartier, N., Hacein-Bey-Abina, S., Bartholomae, C.C., Veres, G., Schmidt, M., Kutschera, I., Vidaud, M., Abel, U. (2009). Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326, 818–823CrossRefGoogle Scholar
  6. Chatterjee, S., Basak, P., Das, P., Das, M., Pereira, J.A., Dutta, R.K., Chaklader, M., Chaudhuri, S., and Law, S. (2010). Primitive Sca-1 positive bone marrow HSC in mouse model of aplastic anemia: a comparative study through flowcytometric analysis and scanning electron microscopy. Stem Cells Int 2010, doi:10.4061/2010/614395.Google Scholar
  7. Christensen, J.L., and Weissman, I.L. (2001). Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc Natl Acad Sci USA 98, 14541–14546.CrossRefGoogle Scholar
  8. Douay, L., and Giarratana, M.C. (2009). Ex vivo generation of human red blood cells: a new advance in stem cell engineering. Methods Mol Biol 482, 127–140.CrossRefGoogle Scholar
  9. Ema, H., Takano, H., Sudo, K., and Nakauchi, H. (2000). In vitro selfrenewal division of hematopoietic stem cells. J Exp Med 192, 1281–1288.CrossRefGoogle Scholar
  10. Essers, M.A., Offner, S., Blanco-Bose, W.E., Waibler, Z., Kalinke, U., Duchosal, M.A., and Trumpp, A. (2009). IFNα activates dormant haematopoietic stem cells in vivo. Nature 458, 904–908.CrossRefGoogle Scholar
  11. Giarratana, M.A., Kobari, L., Lapillonne, H., Chalmers, D., Kiger, L., Cynober, T., Marden, M.C., Wajcman, H., and Douay, L. (2005). Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23, 69–74.CrossRefGoogle Scholar
  12. Gilner, J.B., Walton, W.G., Gush, K., and Kirby, S.L. (2007). Antibodies to stem cell marker antigens reduce engraftment of hematopoietic stem cells. Stem Cells 25, 279–288.CrossRefGoogle Scholar
  13. Haylock, D.N., Williams, B., Johnston, H.M., Liu, M.C., Rutherford, K.E., Whitty, G.A., Simmons, P.J., Bertoncello, I., and Nilssona, S.K. (2007). Hemopoietic stem cells with higher hemopoietic potential reside at the bone marrow endosteum. Stem Cells 25, 1062–1069.CrossRefGoogle Scholar
  14. Huynh, H.D., Iizuka, S., Kaba, M., Kirak, O., Zheng, J., Lodish, H.F., and Zhang, C.C. (2008). Insulin-like growth factor-binding protein 2 secreted by a tumorigenic cell line supports ex vivo expansion of mouse hematopoietic stem cells. Stem Cells 26, 1628–1635.CrossRefGoogle Scholar
  15. Ito, Y., Oike, Y., Yasunaga, K., Hamada, K., Miyata, K., Matsumoto, S., Sugano, S., Tanihara, H., Masuho, Y., Suda, T., et al. (2003). Inhibition of angiogenesis and vascular leakiness by angiopoietin related protein 4. Cancer Res 63, 6651–6657.Google Scholar
  16. Krosl, J., Austin, P., Beslu, N., Kroon, E., Humphries, R.K., and Sauvageau, G. (2003). In vitro expansion of hematopoietic stem cells by recombinant TATHOXB4 protein. Nat Med 9, 1428–1432.CrossRefGoogle Scholar
  17. Oike, Y., Akao, M., Kubota, Y., and Suda, T. (2005). Angiopoietinlike proteins: Potential new targets for metabolic syndrome therapy. Trends Mol Med 11, 473–479.CrossRefGoogle Scholar
  18. Oike, Y., Ito, Y., Maekawa, H., Morisada, T., Kubota, Y., Akao, M., Urano, T., Yasunaga, K., and Suda, T. (2004). Angiopoietin-related growth factor (AGF) promotes angiogenesis. Blood 103, 3760–3765.CrossRefGoogle Scholar
  19. Okada, S., Nakauchi, H., Nagayoshi, K., Nishikawa, S., Miura, Y., and Suda, T. (1992). In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80, 3044–3050.Google Scholar
  20. Ono, M., Shimizugawa, T., Shimamura, M., Yoshida, K., Noji-Sakikawa, C., Ando, Y., Koishi, R., and Furukawa, H. (2003). Protein region important for regulation of lipid metabolism in angiopoietinlike 3 (ANGPTL3): ANGPTL3 is cleaved and activated in vivo. J Biol Chem 278, 41804–41809.CrossRefGoogle Scholar
  21. Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. (1996). Longterm lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273, 242–245.CrossRefGoogle Scholar
  22. Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willertk, K., Hintz, L., Nussek, R., and Weissman, I.L. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423, 409–414.CrossRefGoogle Scholar
  23. Shimizugawa, T., Ono, M., Shimamura, M., Yoshida, K., Ando, Y., Koishi, R., Ueda, K., Inaba, T., Minekura, H., Kohama, T., et al. (2002). ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem 277, 33742–33748.CrossRefGoogle Scholar
  24. Spangrude, G.J., Heimfeld, S., and Weissman, I.L. (1988). Purification and characterization of mouse hematopoietic stem cells. Science 241, 58–62.CrossRefGoogle Scholar
  25. Varnum-Finney, B., Xu, L., Brashem-Stein, C., Nourigat, C., Flowers, D., Bakkour, S., Pear, W.S., and Bernstein, I.D. (2000). Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 6, 1278–1281.CrossRefGoogle Scholar
  26. Verma, I.M., and Weitzman, M.D. (2005). Gene therapy: Twenty-first century medicine. Annu Rev Biochem 74, 711–738.CrossRefGoogle Scholar
  27. Weekx, S.F.A., Snoeck, H.W., Offner, F., Smedt, M.D., Bockstaele, D.R.V., Nijs, G., Lenjou, M., Moulijn, A., Rodrigus, I., Berneman, Z.N., et al. (2000). Generation of T cells from adult human hematopoietic stem cells and progenitors in a fetal thymic organ culture system: stimulation by tumor necrosis factor-α. Blood 95, 2806–2812.Google Scholar
  28. Willert, K., Brown, J.D., Danenberg, E., Duncan, A.W., Weissman, I.L., Reya, T., Yates, J.R., and Nusse, R. (2003). Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423, 448–452.CrossRefGoogle Scholar
  29. Wilson, A., Laurenti, E., Oser, G., van der Wath, R.C., Blanco-Bose, W., Jaworski, M., Offner, S., Dunant, C.F., Eshkind, L., Bockamp, E., et al. (2008). Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135, 1118–1129.CrossRefGoogle Scholar
  30. Zhang, C.C., Kaba M., Ge, G., Xie, K., Tong, W., Hug, C., and Lodish, H.F. (2006). Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells. Nat Med 12, 240–245.CrossRefGoogle Scholar
  31. Zhang, C.C, Kaba, M., Iizuka, S., Huynh, H.D., and Lodish, H.F. (2008). Angiopoietin-like 5 and IGFBP2 stimulate ex vivo expansion of human cord blood hematopoietic stem cells as assayed by NOD/SCID transplantation. Blood 111, 3415–3423.CrossRefGoogle Scholar
  32. Zhang, C.C, and Lodish, H.F. (2005). Murine hematopoietic stem cells change their surface phenotype during ex vivo expansion. Blood 105, 4314–4320.CrossRefGoogle Scholar
  33. Zheng, J., Huynh, H.D., Umikawa, M., Silvany, R., and Zhang, C.C. (2011). Angiopoietin-like protein 3 supports the activity of hematopoietic stem cells in the bone marrow niche. Blood 117, 470–479.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Shahina Akhter
    • 1
  • Md. Mashiar Rahman
    • 1
  • Hyun Seo Lee
    • 1
  • Hyeon-Jin Kim
    • 2
  • Seong-Tshool Hong
    • 1
  1. 1.Department of Microbiology and Genetics and Institute for Medical ScienceChonbuk National University Medical SchoolJeonjuSouth Korea
  2. 2.JINIS BDRD InstituteJINIS Biopharmaceuticals Co.JeollabukdoSouth Korea

Personalised recommendations