Protein & Cell

, Volume 3, Issue 7, pp 526–534 | Cite as

Prioritization of candidate genes for attention deficit hyperactivity disorder by computational analysis of multiple data sources

  • Suhua Chang
  • Weina Zhang
  • Lei Gao
  • Jing WangEmail author
Research Article


Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable psychiatric disorder characterized by hyperactivity, inattention and increased impulsivity. In recent years, a large number of genetic studies for ADHD have been published and related genetic data has been accumulated dramatically. To provide researchers a comprehensive ADHD genetic resource, we previously developed the first genetic database for ADHD (ADHDgene). The abundant genetic data provides novel candidates for further study. Meanwhile, it also brings new challenge for selecting promising candidate genes for replication and verification research. In this study, we surveyed the computational tools for candidate gene prioritization and selected five tools, which integrate multiple data sources for gene prioritization, to prioritize ADHD candidate genes in ADHDgene. The prioritization analysis resulted in 16 prioritized candidate genes, which are mainly involved in several major neurotransmitter systems or in nervous system development pathways. Among these genes, nervous system development related genes, especially SNAP25, STX1A and the gene-gene interactions related with each of them deserve further investigations. Our results may provide new insight for further verification study and facilitate the exploration of pathogenesis mechanism of ADHD.


gene prioritization attention deficit hyperactivity disorder candidate genes multiple data sources 


  1. Aerts, S., Lambrechts, D., Maity, S., Van Loo, P., Coessens, B., De Smet, F., Tranchevent, L.-C., De Moor, B., Marynen, P., Hassan, B., et al. (2006). Gene prioritization through genomic data fusion. Nat Biotech 24, 537–544.CrossRefGoogle Scholar
  2. Aerts, S., Van Loo, P., Thijs, G., Mayer, H., de Martin, R., Moreau, Y., and De Moor, B. (2005). TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis. Nucleic Acids Res 33, W393–396.CrossRefGoogle Scholar
  3. Aerts, S., Vilain, S., Hu, S., Tranchevent, L.C., Barriot, R., Yan, J., Moreau, Y., Hassan, B.A., and Quan, X.J. (2009). Integrating computational biology and forward genetics in Drosophila. PLos Genet 5, e1000351.CrossRefGoogle Scholar
  4. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J Mol Biol 215, 403–410.CrossRefGoogle Scholar
  5. Arnsten, A.F. (2006). Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways. J Clin Psychiatry 67Suppl 8, 7–12.Google Scholar
  6. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25, 25–29.CrossRefGoogle Scholar
  7. Biederman, J., Newcorn, J., and Sprich, S. (1991). Comorbidity of attention deficit hyperactivity disorder with conduct, depressive, anxiety, and other disorders. Am J Psychiatry 148, 564–577.CrossRefGoogle Scholar
  8. Brookes, K., Xu, X., Chen, W., Zhou, K., Neale, B., Lowe, N., Anney, R., Franke, B., Gill, M., Ebstein, R., et al. (2006). The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes. Mol Psychiatry 11, 934–953.CrossRefGoogle Scholar
  9. Brookes, K.J., Knight, J., Xu, X., and Asherson, P. (2005). DNA pooling analysis of ADHD and genes regulating vesicle release of neurotransmitters. Am J Med Genet B Neuropsychiatr Genet 139B, 33–37.CrossRefGoogle Scholar
  10. Chen, J., Aronow, B.J., and Jegga, A.G. (2009a). Disease candidate gene identification and prioritization using protein interaction networks. BMC Bioinformatics 10, 73.CrossRefGoogle Scholar
  11. Chen, J., Bardes, E.E., Aronow, B.J., and Jegga, A.G. (2009b). ToppGene Suite for gene list enrichment analysis and candidate gene prioritization. Nucleic Acids Res 37, W305–W311.CrossRefGoogle Scholar
  12. Chen, J., Xu, H., Aronow, B.J., and Jegga, A.G. (2007). Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinformatics 8, 392.CrossRefGoogle Scholar
  13. Chen, Y., Wang, W., Zhou, Y., Shields, R., Chanda, S.K., Elston, R.C., and Li, J. (2011a). In silico gene prioritization by integrating multiple data sources. PLoS ONE 6, e21137.CrossRefGoogle Scholar
  14. Chen, Y.A., Tripathi, L.P., and Mizuguchi, K. (2011b). TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery. PLoS ONE 6, e17844.CrossRefGoogle Scholar
  15. Elbers, C.C., Onland-Moret, N.C., Franke, L., Niehoff, A.G., van der Schouw, Y.T., and Wijmenga, C. (2007). A strategy to search for common obesity and type 2 diabetes genes. Trends in endocrinology and metabolism: TEM 18, 19–26.CrossRefGoogle Scholar
  16. Faraone, S.V., and Doyle, A.E. (2001). The nature and heritability of attention-deficit/hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 10, 299–316, viii–ix.Google Scholar
  17. Faraone, S.V., Perlis, R.H., Doyle, A.E., Smoller, J.W., Goralnick, J.J., Holmgren, M.A., and Sklar, P. (2005). Molecular genetics of attention-deficit/hyperactivity disorder. Biol Psychiatry 57, 1313–1323.CrossRefGoogle Scholar
  18. Flicek, P., Amode, M.R., Barrell, D., Beal, K., Brent, S., Chen, Y., Clapham, P., Coates, G., Fairley, S., Fitzgerald, S., et al. (2011). Ensembl 2011. Nucleic Acids Res 39, D800–806.CrossRefGoogle Scholar
  19. Frank, S.P., Thon, K.P., Bischoff, S.C., and Lorentz, A. (2011). SNAP-23 and syntaxin-3 are required for chemokine release by mature human mast cells. Mol Immunol 49, 353–358.CrossRefGoogle Scholar
  20. Franke, L., Bakel, H.v., Fokkens, L., de Jong, E.D., Egmont-Petersen, M., and Wijmenga, C. (2006). Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet 78, 1011–1025.CrossRefGoogle Scholar
  21. Gizer, I.R., Ficks, C., and Waldman, I.D. (2009). Candidate gene studies of ADHD: a meta-analytic review. Hum Genet 126, 51–90.CrossRefGoogle Scholar
  22. Guan, L., Wang, B., Chen, Y., Yang, L., Li, J., Qian, Q., Wang, Z., Faraone, S.V., and Wang, Y. (2009). A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry 14, 546–554.CrossRefGoogle Scholar
  23. Ivanov, I., Bansal, R., Hao, X., Zhu, H., Kellendonk, C., Miller, L., Sanchez-Pena, J., Miller, A.M., Chakravarty, M.M., Klahr, K., et al. (2010). Morphological abnormalities of the thalamus in youths with attention deficit hyperactivity disorder. Am J Psychiatry 167, 397–408.CrossRefGoogle Scholar
  24. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., and Hirakawa, M. (2010). KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 38, D355–360.CrossRefGoogle Scholar
  25. Kang, H.J., Kawasawa, Y.I., Cheng, F., Zhu, Y., Xu, X., Li, M., Sousa, A.M., Pletikos, M., Meyer, K.A., Sedmak, G., et al. (2011). Spatio-temporal transcriptome of the human brain. Nature 478, 483–489.CrossRefGoogle Scholar
  26. Kennedy, M.J., and Ehlers, M.D. (2011). Mechanisms and function of dendritic exocytosis. Neuron 69, 856–875.CrossRefGoogle Scholar
  27. Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A., et al. (2009). Human protein reference database—2009 update. Nucleic Acids Res 37, D767–772.CrossRefGoogle Scholar
  28. Kohler, S., Bauer, S., Horn, D., and Robinson, P.N. (2008). Walking the interactome for prioritization of candidate disease genes. Am J Hum Genet 82, 949–958.CrossRefGoogle Scholar
  29. Lasky-Su, J., Neale, B.M., Franke, B., Anney, R.J., Zhou, K., Maller, J.B., Vasquez, A.A., Chen, W., Asherson, P., Buitelaar, J., et al. (2008). Genome-wide association scan of quantitative traits for attention deficit hyperactivity disorder identifies novel associations and confirms candidate gene associations. Am J Med Genet B Neuropsychiatr Genet 147B, 1345–1354.CrossRefGoogle Scholar
  30. Levin, E.D. (2002). Nicotinic receptor subtypes and cognitive function. J Neurobiol 53, 633–640.CrossRefGoogle Scholar
  31. Liu, S.T., Sharon-Friling, R., Ivanova, P., Milne, S.B., Myers, D.S., Rabinowitz, J.D., Brown, H.A., and Shenk, T. (2011). Synaptic vesicle-like lipidome of human cytomegalovirus virions reveals a role for SNARE machinery in virion egress. Proc Natl Acad Sci U S A 108, 12869–12874.CrossRefGoogle Scholar
  32. McKusick, V.A. (2007). Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet 80, 588–604.CrossRefGoogle Scholar
  33. Mulder, N.J., and Apweiler, R. (2008). The InterPro database and tools for protein domain analysis. Current protocols in bioinformatics/editoral board, Andreas D. Baxevanis et al. Chapter 2, Unit 27.Google Scholar
  34. Nakamura, K., Iwata, Y., Anitha, A., Miyachi, T., Toyota, T., Yamada, S., Tsujii, M., Tsuchiya, K.J., Iwayama, Y., Yamada, K., et al. (2011). Replication study of Japanese cohorts supports the role of STX1A in autism susceptibility. Prog Neuropsychopharmacol Biol Psychiatry 35, 454–458.CrossRefGoogle Scholar
  35. Neale, B.M., Medland, S.E., Ripke, S., Asherson, P., Franke, B., Lesch, K.P., Faraone, S.V., Nguyen, T.T., Schafer, H., Holmans, P., et al. (2010). Meta-analysis of genome-wide association studies of attention-deficit/hyperactivity disorder. J Am Acad Child Adolesc Psychiatry 49, 884–897.CrossRefGoogle Scholar
  36. Oades, R.D. (2008). Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). Prog Brain Res 172, 543–565.CrossRefGoogle Scholar
  37. Ribases, M., Ramos-Quiroga, J.A., Hervas, A., Bosch, R., Bielsa, A., Gastaminza, X., Artigas, J., Rodriguez-Ben, S., Estivill, X., Casas, M., et al. (2009). Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB. Mol Psychiatry 14, 71–85.CrossRefGoogle Scholar
  38. Sharp, S.I., McQuillin, A., and Gurling, H.M. (2009). Genetics of attention-deficit hyperactivity disorder (ADHD). Neuropharmacology 57, 590–600.CrossRefGoogle Scholar
  39. Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.L., and Ideker, T. (2011). Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27, 431–432.CrossRefGoogle Scholar
  40. Sollner, T., Whiteheart, S.W., Brunner, M., Erdjument-Bromage, H., Geromanos, S., Tempst, P., and Rothman, J.E. (1993). SNAP receptors implicated in vesicle targeting and fusion. Nature 362, 318–324.CrossRefGoogle Scholar
  41. Sun, J., Jia, P., Fanous, A.H., Webb, B.T., van den Oord, E.J.C.G., Chen, X., Bukszar, J., Kendler, K.S., and Zhao, Z. (2009). A multi-dimensional evidence-based candidate gene prioritization approach for complex diseases-schizophrenia as a case. Bioinformatics 25, 2595–6602.CrossRefGoogle Scholar
  42. Swanson, J.M., Kinsbourne, M., Nigg, J., Lanphear, B., Stefanatos, G.A., Volkow, N., Taylor, E., Casey, B.J., Castellanos, F.X., and Wadhwa, P.D. (2007). Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. Neuropsychol Rev 17, 39–59.CrossRefGoogle Scholar
  43. Teber, E.T., Liu, J.Y., Ballouz, S., Fatkin, D., and Wouters, M.A. (2009). Comparison of automated candidate gene prediction systems using genes implicated in type 2 diabetes by genome-wide association studies. BMC Bioinformatics 10 Suppl 1, S69.CrossRefGoogle Scholar
  44. Thienpont, B., Zhang, L., Postma, A.V., Breckpot, J., Tranchevent, L.C., Van Loo, P., Mollgard, K., Tommerup, N., Bache, I., Tumer, Z., et al. (2010). Haploinsufficiency of TAB2 causes congenital heart defects in humans. Am J Hum Genet 86, 839–849.CrossRefGoogle Scholar
  45. Tiffin, N., Adie, E., Turner, F., Brunner, H.G., van Driel, M.A., Oti, M., Lopez-Bigas, N., Ouzounis, C., Perez-Iratxeta, C., Andrade-Navarro, M.A., et al. (2006). Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res 34, 3067–3081.CrossRefGoogle Scholar
  46. Tranchevent, L.-C., Barriot, R., Yu, S., Van Vooren, S., Van Loo, P., Coessens, B., De Moor, B., Aerts, S., and Moreau, Y. (2008). Endeavour update: a web resource for gene prioritization in multiple species. Nucleic Acids Res 36, W377–384.CrossRefGoogle Scholar
  47. Tranchevent, L.-C., Capdevila, F.B., Nitsch, D., De Moor, B., De Causmaecker, P., and Moreau, Y. (2010). A guide to web tools to prioritize candidate genes. Brief Bioinform 12, 22–32.CrossRefGoogle Scholar
  48. Volkow, N.D., Wang, G.J., Tomasi, D., Kollins, S.H., Wigal, T.L., Newcorn, J.H., Telang, F.W., Fowler, J.S., Logan, J., Wong, C.T., et al. (2012). Methylphenidate-elicited dopamine increases in ventral striatum are associated with long-term symptom improvement in adults with attention deficit hyperactivity disorder. J Neurosci 32, 841–849.CrossRefGoogle Scholar
  49. Walther, D.J., Peter, J.U., Bashammakh, S., Hortnagl, H., Voits, M., Fink, H., and Bader, M. (2003). Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299, 76.CrossRefGoogle Scholar
  50. Zhang, K., Chang, S., Cui, S., Guo, L., Zhang, L., and Wang, J. (2011a). ICSNPathway: identify candidate causal SNPs and pathways from genome-wide association study by one analytical framework. Nucleic Acids Res 39, W437–443.CrossRefGoogle Scholar
  51. Zhang, K., Cui, S., Chang, S., Zhang, L., and Wang, J. (2010). i-GSEA4GWAS: a web server for identification of pathways/gene sets associated with traits by applying an improved gene set enrichment analysis to genome-wide association study. Nucleic Acids Res 38, W90–95.CrossRefGoogle Scholar
  52. Zhang, L., Chang, S., Li, Z., Zhang, K., Du, Y., Ott, J., and Wang, J. (2012). ADHDgene: a genetic database for attention deficit hyperactivity disorder. Nucleic Acids Res 40, D1003–1009.CrossRefGoogle Scholar
  53. Zhou, K., Dempfle, A., Arcos-Burgos, M., Bakker, S.C., Banaschewski, T., Biederman, J., Buitelaar, J., Castellanos, F.X., Doyle, A., Ebstein, R.P., et al. (2008). Meta-analysis of genome-wide linkage scans of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 147B, 1392–1398.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Suhua Chang
    • 1
    • 2
  • Weina Zhang
    • 1
    • 2
  • Lei Gao
    • 1
    • 2
  • Jing Wang
    • 1
    Email author
  1. 1.Key Laboratory of Mental Health, Institute of PsychologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations