Protein & Cell

, Volume 3, Issue 5, pp 383–391 | Cite as

Crystal structure of the ubiquitin-like domain of human TBK1

  • Jian Li
  • Jun Li
  • Andrea Miyahira
  • Jian Sun
  • Yingfang Liu
  • Genhong Cheng
  • Huanhuan Liang
Research Article

Abstract

TANK-binding kinase 1 (TBK1) is an important enzyme in the regulation of cellular antiviral effects. TBK1 regulates the activity of the interferon regulatory factors IRF3 and IRF7, thereby playing a key role in type I interferon (IFN) signaling pathways. The structure of TBK1 consists of an N-terminal kinase domain, a middle ubiquitin-like domain (ULD), and a C-terminal elongated helical domain. It has been reported that the ULD of TBK1 regulates kinase activity, playing an important role in signaling and mediating interactions with other molecules in the IFN pathway. In this study, we present the crystal structure of the ULD of human TBK1 and identify several conserved residues by multiple sequence alignment. We found that a hydrophobic patch in TBK1, containing residues Leu316, Ile353, and Val382, corresponding to the “Ile44 hydrophobic patch” observed in ubiquitin, was conserved in TBK1, IκB kinase epsilon (IKKɛ/IKKi), IκB kinase alpha (IKKα), and IκB kinase beta (IKKβ). In comparison with the structure of the IKKβ ULD domain of Xenopus laevis, we speculate that the Ile44 hydrophobic patch of TBK1 is present in an intramolecular binding surface between ULD and the C-terminal elongated helices. The varying surface charge distributions in the ULD domains of IKK and IKK-related kinases may be relevant to their specificity for specific partners.

Keywords

TBK1 ubiquitin-like domain crystal structure hydrophobic patch 

References

  1. Adams, P.D., Afonine, P.V., Bunkoczi, G., Chen, V.B., Davis, I.W., Echols, N., Headd, J.J., Hung, L.W., Kapral, G.J., Grosse-Kunstleve, R.W., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66, 213–221.CrossRefGoogle Scholar
  2. Arnold, K., Bordoli, L., Kopp, J., and Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22, 195–201.CrossRefGoogle Scholar
  3. Baccala, R., Hoebe, K., Kono, D.H., Beutler, B., and Theofilopoulos, A.N. (2007). TLR-dependent and TLR-independent pathways of type I interferon induction in systemic autoimmunity. Nat Med 13, 543–551.CrossRefGoogle Scholar
  4. Bolton, D., Evans, P.A., Stott, K., and Broadhurst, R.W. (2001). Structure and properties of a dimeric N-terminal fragment of human ubiquitin. J Mol Biol 314, 773–787.CrossRefGoogle Scholar
  5. Buchberger, A., Howard, M.J., Proctor, M., and Bycroft, M. (2001). The UBX domain: a widespread ubiquitin-like module. J Mol Biol 307, 17–24.CrossRefGoogle Scholar
  6. Burroughs, A.M., Balaji, S., Iyer, L.M., and Aravind, L. (2007). Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol Direct 2, 18.CrossRefGoogle Scholar
  7. Chau, T.L., Gioia, R., Gatot, J.S., Patrascu, F., Carpentier, I., Chapelle, J.P., O’Neill, L., Beyaert, R., Piette, J., and Chariot, A. (2008). Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem Sci 33, 171–180.CrossRefGoogle Scholar
  8. Chen, G., Shaw, M.H., Kim, Y.G., and Nuñez, G. (2009). NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol 4, 365–398.CrossRefGoogle Scholar
  9. Da, Q., Yang, X., Xu, Y., Gao, G., Cheng, G., and Tang, H. (2011). TANK-binding kinase 1 attenuates PTAP-dependent retroviral budding through targeting endosomal sorting complex required for transport-I. J Immunol 186, 3023–3030.CrossRefGoogle Scholar
  10. Emsley, P., and Cowtan, K. (2004). Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60, 2126–2132.CrossRefGoogle Scholar
  11. Fitzgerald, K.A., McWhirter, S.M., Faia, K.L., Rowe, D.C., Latz, E., Golenbock, D.T., Coyle, A.J., Liao, S.M., and Maniatis, T. (2003). IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol 4, 491–496.CrossRefGoogle Scholar
  12. Grabbe, C., and Dikic, I. (2009). Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem Rev 109, 1481–1494.CrossRefGoogle Scholar
  13. Guex, N., and Peitsch, M.C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714–2723.CrossRefGoogle Scholar
  14. Hänzelmann, P., Stingele, J., Hofmann, K., Schindelin, H., and Raasi, S. (2010). The yeast E4 ubiquitin ligase Ufd2 interacts with the ubiquitin-like domains of Rad23 and Dsk2 via a novel and distinct ubiquitin-like binding domain. J Biol Chem 285, 20390–20398.CrossRefGoogle Scholar
  15. Hiscott, J. (2007). Convergence of the NF-kappaB and IRF pathways in the regulation of the innate antiviral response. Cytokine Growth Factor Rev 18, 483–490.CrossRefGoogle Scholar
  16. Hochstrasser, M. (2009). Origin and function of ubiquitin-like proteins. Nature 458, 422–429.CrossRefGoogle Scholar
  17. Holm, L., and Rosenström, P. (2010). Dali server: conservation mapping in 3D. Nucleic Acids Res 38, W545–549.CrossRefGoogle Scholar
  18. Hurley, J.H., Lee, S., and Prag, G. (2006). Ubiquitin-binding domains. Biochem J 399, 361–372.CrossRefGoogle Scholar
  19. Ikeda, F., Hecker, C.M., Rozenknop, A., Nordmeier, R.D., Rogov, V., Hofmann, K., Akira, S., Dötsch, V., and Dikic, I. (2007). Involvement of the ubiquitin-like domain of TBK1/IKK-i kinases in regulation of IFN-inducible genes. EMBO J 26, 3451–3462.CrossRefGoogle Scholar
  20. Komander, D., Clague, M.J., and Urbé, S. (2009). Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol 10, 550–563.CrossRefGoogle Scholar
  21. Lee, S., Tsai, Y.C., Mattera, R., Smith, W.J., Kostelansky, M.S., Weissman, A.M., Bonifacino, J.S., and Hurley, J.H. (2006). Structural basis for ubiquitin recognition and autoubiquitination by Rabex-5. Nat Struct Mol Biol 13, 264–271.CrossRefGoogle Scholar
  22. Lytle, B.L., Peterson, F.C., Qiu, S.H., Luo, M., Zhao, Q., Markley, J.L., and Volkman, B.F. (2004). Solution structure of a ubiquitin-like domain from tubulin-binding cofactor B. J Biol Chem 279, 46787–46793.CrossRefGoogle Scholar
  23. May, M.J., Larsen, S.E., Shim, J.H., Madge, L.A., and Ghosh, S. (2004). A novel ubiquitin-like domain in IkappaB kinase beta is required for functional activity of the kinase. J Biol Chem 279, 45528–45539.CrossRefGoogle Scholar
  24. Minor, Z.O.W. (1997). Processing of X-ray Diffraction Data Collected in Oscillation Mode. Methods Enzymol 276, 20.Google Scholar
  25. Mishra, S.K., Ammon, T., Popowicz, G.M., Krajewski, M., Nagel, R.J., Ares, M. Jr, Holak, T.A., and Jentsch, S. (2011). Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature 474, 173–178.CrossRefGoogle Scholar
  26. Mueller, T.D., and Feigon, J. (2003). Structural determinants for the binding of ubiquitin-like domains to the proteasome. EMBO J 22, 4634–4645.CrossRefGoogle Scholar
  27. Namanja, A.T., Li, Y.J., Su, Y., Wong, S., Lu, J., Colson, L.T., Wu, C., Li, S.S., and Chen, Y. (2012). Insights into high affinity small ubiquitin-like modifier (SUMO) recognition by SUMO-interacting motifs (SIMs) revealed by a combination of NMR and peptide array analysis. J Biol Chem 287, 3231–3240.CrossRefGoogle Scholar
  28. Nassar, N., Horn, G., Herrmann, C., Scherer, A., McCormick, F., and Wittinghofer, A. (1995). The 2.2 A crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560.CrossRefGoogle Scholar
  29. Pomerantz, J.L., and Baltimore, D. (1999). NF-kappaB activation by a signaling complex containing TRAF2, TANK and TBK1, a novel IKK-related kinase. EMBO J 18, 6694–6704.CrossRefGoogle Scholar
  30. Qin, S., and Zhou, H.X. (2007). meta-PPISP: a meta web server for protein-protein interaction site prediction. Bioinformatics 23, 3386–3387.CrossRefGoogle Scholar
  31. Rahighi, S., Ikeda, F., Kawasaki, M., Akutsu, M., Suzuki, N., Kato, R., Kensche, T., Uejima, T., Bloor, S., Komander, D., et al. (2009). Specific recognition of linear ubiquitin chains by NEMO is important for NF-kappaB activation. Cell 136, 1098–1109.CrossRefGoogle Scholar
  32. Schwede, T., Kopp, J., Guex, N., and Peitsch, M.C. (2003). SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 31, 3381–3385.CrossRefGoogle Scholar
  33. Sheldrick, G.M. (2008). A short history of SHELX. Acta Crystallogr A 64, 112–122.CrossRefGoogle Scholar
  34. Shen, R.R., and Hahn, W.C. (2011). Emerging roles for the non-canonical IKKs in cancer. Oncogene 30, 631–641.CrossRefGoogle Scholar
  35. Tamura, T., Yanai, H., Savitsky, D., and Taniguchi, T. (2008). The IRF family transcription factors in immunity and oncogenesis. Annu Rev Immunol 26, 535–584.CrossRefGoogle Scholar
  36. Verpooten, D., Ma, Y., Hou, S., Yan, Z., and He, B. (2009). Control of TANK-binding kinase 1-mediated signaling by the gamma(1)34.5 protein of herpes simplex virus 1. J Biol Chem 284, 1097–1105.CrossRefGoogle Scholar
  37. Walden, H., Podgorski, M.S., Huang, D.T., Miller, D.W., Howard, R.J., Minor, D.L. Jr, Holton, J.M., and Schulman, B.A. (2003). The structure of the APPBP1-UBA3-NEDD8-ATP complex reveals the basis for selective ubiquitin-like protein activation by an E1. Mol Cell 12, 1427–1437.CrossRefGoogle Scholar
  38. Welchman, R.L., Gordon, C., and Mayer, R.J. (2005). Ubiquitin and ubiquitin-like proteins as multifunctional signals. Nat Rev Mol Cell Biol 6, 599–609.CrossRefGoogle Scholar
  39. Wild, P., Farhan, H., McEwan, D.G., Wagner, S., Rogov, V.V., Brady, N.R., Richter, B., Korac, J., Waidmann, O., Choudhary, C., et al. (2011). Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228–233.CrossRefGoogle Scholar
  40. Xu, G., Lo, Y.C., Li, Q., Napolitano, G., Wu, X., Jiang, X., Dreano, M., Karin, M., and Wu, H. (2011). Crystal structure of inhibitor of κB kinase β. Nature 472, 325–330.CrossRefGoogle Scholar
  41. Yatherajam, G., Banerjee, P.P., McCorkell, K.A., Solt, L.A., Hanson, E.P., Madge, L.A., Kang, S., Worley, P.F., Orange, J.S., and May, M.J. (2010). Cutting edge: association with I kappa B kinase beta regulates the subcellular localization of Homer3. J Immunol 185, 2665–2669.CrossRefGoogle Scholar
  42. Zhang, Q.C., Deng, L., Fisher, M., Guan, J., Honig, B., and Petrey, D. (2011). PredUs: a web server for predicting protein interfaces using structural neighbors. Nucleic Acids Res 39, W283–287.CrossRefGoogle Scholar
  43. Zhong, B., Yang, Y., Li, S., Wang, Y.Y., Li, Y., Diao, F., Lei, C., He, X., Zhang, L., Tien, P., et al. (2008). The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jian Li
    • 1
    • 3
  • Jun Li
    • 1
    • 3
  • Andrea Miyahira
    • 2
  • Jian Sun
    • 1
    • 3
  • Yingfang Liu
    • 1
  • Genhong Cheng
    • 2
  • Huanhuan Liang
    • 1
  1. 1.State Key Laboratory of Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  2. 2.Department of Microbiology, Immunology & Molecular GeneticsUniversity of CaliforniaLos AngelesUSA
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations