Advertisement

Protein & Cell

, Volume 3, Issue 4, pp 278–290 | Cite as

Epigenetic control on cell fate choice in neural stem cells

  • Xiao-Ling Hu
  • Yuping Wang
  • Qin Shen
Review

Abstract

Derived from neural stem cells (NSCs) and progenitor cells originated from the neuroectoderm, the nervous system presents an unprecedented degree of cellular diversity, interwoven to ensure correct connections for propagating information and responding to environmental cues. NSCs and progenitor cells must integrate cell-intrinsic programs and environmental cues to achieve production of appropriate types of neurons and glia at appropriate times and places during development. These developmental dynamics are reflected in changes in gene expression, which is regulated by transcription factors and at the epigenetic level. From early commitment of neural lineage to functional plasticity in terminal differentiated neurons, epigenetic regulation is involved in every step of neural development. Here we focus on the recent advance in our understanding of epigenetic regulation on orderly generation of diverse neural cell types in the mammalian nervous system, an important aspect of neural development and regenerative medicine.

Keywords

neural stem cells (NSCs) epigenetic regulation neurogenesis gliogenesis radial glial cell cerebral cortex subventricular zone (SVZ) DNA methylation histone modification 

References

  1. Allis, C.D., Berger, S.L., Cote, J., Dent, S., Jenuwien, T., Kouzarides, T., Pillus, L., Reinberg, D., Shi, Y., Shiekhattar, R., et al. (2007). New nomenclature for chromatin-modifying enzymes. Cell 131, 633–636.Google Scholar
  2. Alvarez-Venegas, R., and Avramova, Z. (2005). Methylation patterns of histone H3 Lys 4, Lys 9 and Lys 27 in transcriptionally active and inactive Arabidopsis genes and in atx1 mutants. Nucleic Acids Res 33, 5199–5207.PubMedCentralGoogle Scholar
  3. Ambros, V. (2003). MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 113, 673–676.Google Scholar
  4. Ambros, V. (2004). The functions of animal microRNAs. Nature 431, 350–355.Google Scholar
  5. Azuara, V., Perry, P., Sauer, S., Spivakov, M., Jørgensen, H.F., John, R.M., Gouti, M., Casanova, M., Warnes, G., Merkenschlager, M., et al. (2006). Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8, 532–538.Google Scholar
  6. Balazs, R., Vernon, J., and Hardy, J. (2011). Epigenetic mechanisms in Alzheimer’s disease: progress but much to do. Neurobiol Aging 32, 1181–1187.Google Scholar
  7. Bannister, A.J., and Kouzarides, T. (2005). Reversing histone methylation. Nature 436, 1103–1106.Google Scholar
  8. Bannister, A.J., Schneider, R., Myers, F.A., Thorne, A.W., Crane-Robinson, C., and Kouzarides, T. (2005). Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 280, 17732–17736.Google Scholar
  9. Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297.Google Scholar
  10. Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233.PubMedCentralGoogle Scholar
  11. Bernstein, B.E., Meissner, A., and Lander, E.S. (2007). The mammalian epigenome. Cell 128, 669–681.Google Scholar
  12. Bernstein, B.E., Mikkelsen, T.S., Xie, X., Kamal, M., Huebert, D.J., Cuff, J., Fry, B., Meissner, A., Wernig, M., Plath, K., et al. (2006). A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326.Google Scholar
  13. Bernstein, E., and Allis, C.D. (2005). RNA meets chromatin. Genes Dev 19, 1635–1655.Google Scholar
  14. Bhutani, N., Brady, J.J., Damian, M., Sacco, A., Corbel, S.Y., and Blau, H.M. (2010). Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463, 1042–1047.PubMedCentralGoogle Scholar
  15. Bhutani, N., Burns, D.M., and Blau, H.M. (2011). DNA demethylation dynamics. Cell 146, 866–872.PubMedCentralGoogle Scholar
  16. Bird, A. (2002). DNA methylation patterns and epigenetic memory. Genes Dev 16, 6–21.Google Scholar
  17. Bird, A. (2007). Perceptions of epigenetics. Nature 447, 396–398.Google Scholar
  18. Burgold, T., Spreafico, F., De Santa, F., Totaro, M.G., Prosperini, E., Natoli, G., and Testa, G. (2008). The histone H3 lysine 27-specific demethylase Jmjd3 is required for neural commitment. PLoS One 3, e3034.PubMedCentralGoogle Scholar
  19. Cao, R., Wang, L., Wang, H., Xia, L., Erdjument-Bromage, H., Tempst, P., Jones, R.S., and Zhang, Y. (2002). Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043.Google Scholar
  20. Cao, X., Yeo, G., Muotri, A.R., Kuwabara, T., and Gage, F.H. (2006). Noncoding RNAs in the mammalian central nervous system. Annu Rev Neurosci 29, 77–103.Google Scholar
  21. Cartagena, J.A., Matsunaga, S., Seki, M., Kurihara, D., Yokoyama, M., Shinozaki, K., Fujimoto, S., Azumi, Y., Uchiyama, S., and Fukui, K. (2008). The Arabidopsis SDG4 contributes to the regulation of pollen tube growth by methylation of histone H3 lysines 4 and 36 in mature pollen. Dev Biol 315, 355–368.Google Scholar
  22. Cheng, L.C., Pastrana, E., Tavazoie, M., and Doetsch, F. (2009). miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12, 399–408.PubMedCentralGoogle Scholar
  23. Ciccone, D.N., Su, H., Hevi, S., Gay, F., Lei, H., Bajko, J., Xu, G., Li, E., and Chen, T. (2009). KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 461, 415–418.Google Scholar
  24. Cloos, P.A., Christensen, J., Agger, K., Maiolica, A., Rappsilber, J., Antal, T., Hansen, K.H., and Helin, K. (2006). The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 442, 307–311.Google Scholar
  25. Conaco, C., Otto, S., Han, J.J., and Mandel, G. (2006). Reciprocal actions of REST and a microRNA promote neuronal identity. Proc Natl Acad Sci U S A 103, 2422–2427.PubMedCentralGoogle Scholar
  26. Coolen, M., and Bally-Cuif, L. (2009). MicroRNAs in brain development and physiology. Curr Opin Neurobiol 19, 461–470.Google Scholar
  27. Cortellino, S., Xu, J., Sannai, M., Moore, R., Caretti, E., Cigliano, A., Le Coz, M., Devarajan, K., Wessels, A., Soprano, D., et al. (2011). Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79.PubMedCentralGoogle Scholar
  28. De Carvalho, D.D., You, J.S., and Jones, P.A. (2010). DNA methylation and cellular reprogramming. Trends Cell Biol 20, 609–617.PubMedCentralGoogle Scholar
  29. de la Serna, I.L., Ohkawa, Y., and Imbalzano, A.N.(2006). Chromatin remodelling in mammalian differentiation: lessons from ATP-dependent remodellers. Nat Rev Genet 7, 461–473.Google Scholar
  30. De Pietri Tonelli, D., Pulvers, J.N., Haffner, C., Murchison, E.P., Hannon, G.J., and Huttner, W.B. (2008). miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development 135, 3911–3921.PubMedCentralGoogle Scholar
  31. Deaton, A.M., and Bird, A. (2011). CpG islands and the regulation of transcription. Genes Dev 25, 1010–1022.PubMedCentralGoogle Scholar
  32. Eden, S., Hashimshony, T., Keshet, I., Cedar, H., and Thorne, A.W. (1998). DNA methylation models histone acetylation. Nature 394, 842.Google Scholar
  33. Edmunds, J.W., Mahadevan, L.C., and Clayton, A.L. (2008). Dynamic histone H3 methylation during gene induction: HYPB/Setd2 mediates all H3K36 trimethylation. EMBO J 27, 406–420.PubMedCentralGoogle Scholar
  34. Eiraku, M., Watanabe, K., Matsuo-Takasaki, M., Kawada, M., Yonemura, S., Matsumura, M., Wataya, T., Nishiyama, A., Muguruma, K., and Sasai, Y. (2008). Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532.Google Scholar
  35. Fan, G., Martinowich, K., Chin, M.H., He, F., Fouse, S.D., Hutnick, L., Hattori, D., Ge, W., Shen, Y., Wu, H., et al. (2005). DNA methylation controls the timing of astrogliogenesis through regulation of JAK-STAT signaling. Development 132, 3345–3356.Google Scholar
  36. Feng, J., Chang, H., Li, E., and Fan, G. (2005). Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 79, 734–746.Google Scholar
  37. Ferrón, S.R., Charalambous, M., Radford, E., McEwen, K., Wildner, H., Hind, E., Morante-Redolat, J.M., Laborda, J., Guillemot, F., Bauer, S.R., et al. (2011). Postnatal loss of Dlk1 imprinting in stem cells and niche astrocytes regulates neurogenesis. Nature 475, 381–385.PubMedCentralGoogle Scholar
  38. Ficz, G., Branco, M.R., Seisenberger, S., Santos, F., Krueger, F., Hore, T.A., Marques, C.J., Andrews, S., and Reik, W. (2011). Dynamic regulation of 5-hydroxymethylcytosine in mouse ES cells and during differentiation. Nature 473, 398–402.Google Scholar
  39. Gaspard, N., Bouschet, T., Hourez, R., Dimidschstein, J., Naeije, G., van den Ameele, J., Espuny-Camacho, I., Herpoel, A., Passante, L., Schiffmann, S.N., et al. (2008). An intrinsic mechanism of corticogenesis from embryonic stem cells. Nature 455, 351–357.Google Scholar
  40. Gatto, S., Della Ragione, F., Cimmino, A., Strazzullo, M., Fabbri, M., Mutarelli, M., Ferraro, L., Weisz, A., D’Esposito, M., and Matarazzo, M.R. (2010). Epigenetic alteration of microRNAs in DNMT3B-mutated patients of ICF syndrome. Epigenetics 5, 427–443.Google Scholar
  41. Giraldez, A.J., Cinalli, R.M., Glasner, M.E., Enright, A.J., Thomson, J.M., Baskerville, S., Hammond, S.M., Bartel, D.P., and Schier, A.F. (2005). MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838.Google Scholar
  42. Gjerset, R.A., and Martin, D.W. Jr. (1982). Presence of a DNA demethylating activity in the nucleus of murine erythroleukemic cells. J Biol Chem 257, 8581–8583.Google Scholar
  43. Goldberg, A.D., Allis, C.D., and Bernstein, E. (2007). Epigenetics: a landscape takes shape. Cell 128, 635–638.Google Scholar
  44. Golebiewska, A., Atkinson, S.P., Lako, M., and Armstrong, L. (2009). Epigenetic landscaping during hESC differentiation to neural cells. Stem Cells 27, 1298–1308.Google Scholar
  45. Goll, M.G., and Bestor, T.H. (2005). Eukaryotic cytosine methyltransferases. Annu Rev Biochem 74, 481–514.Google Scholar
  46. Goll, M.G., and Halpern, M.E. (2011). DNA methylation in zebrafish. Prog Mol Biol Transl Sci 101, 193–218.Google Scholar
  47. Griffiths-Jones, S., Saini, H.K., van Dongen, S., and Enright, A.J. (2008). miRBase: tools for microRNA genomics. Nucleic Acids Res 36, D154–D158.PubMedCentralGoogle Scholar
  48. Grimson, A., Farh, K.K., Johnston, W.K., Garrett-Engele, P., Lim, L.P., and Bartel, D.P. (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 27, 91–105.PubMedCentralGoogle Scholar
  49. Groth, A., Rocha, W., Verreault, A., and Almouzni, G. (2007). Chromatin challenges during DNA replication and repair. Cell 128, 721–733.Google Scholar
  50. Guo, J.U., Su, Y., Zhong, C., Ming, G.L., and Song, H. (2011). Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434.PubMedCentralGoogle Scholar
  51. Habibi, E., Masoudi-Nejad, A., Abdolmaleky, H.M., and Haggarty, S.J. (2011). Emerging roles of epigenetic mechanisms in Parkinson’s disease. Funct Integr Genomics 11, 523–537.Google Scholar
  52. Hargreaves, D.C., and Crabtree, G.R. (2011). ATP-dependent chromatin remodeling: genetics, genomics and mechanisms. Cell Res 21, 396–420.PubMedCentralGoogle Scholar
  53. Hashimshony, T., Zhang, J., Keshet, I., Bustin, M., and Cedar, H. (2003). The role of DNA methylation in setting up chromatin structure during development. Nat Genet 34, 187–192.Google Scholar
  54. He, L., and Hannon, G.J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522–531.Google Scholar
  55. He, X.B., Yi, S.H., Rhee, Y.H., Kim, H., Han, Y.M., Lee, S.H., Lee, H., Park, C.H., Lee, Y.S., Richardson, E., et al. (2011a). Prolonged membrane depolarization enhances midbrain dopamine neuron differentiation via epigenetic histone modifications. Stem Cells 29, 1861–1873.Google Scholar
  56. He, Y.F., Li, B.Z., Li, Z., Liu, P., Wang, Y., Tang, Q., Ding, J., Jia, Y., Chen, Z., Li, L., et al. (2011b). Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307.PubMedCentralGoogle Scholar
  57. Hevner, R.F., Daza, R.A., Rubenstein, J.L., Stunnenberg, H., Olavarria, J.F., and Englund, C. (2003). Beyond laminar fate: toward a molecular classification of cortical projection/pyramidal neurons. Dev Neurosci 25, 139–151.Google Scholar
  58. Hitoshi, S., Alexson, T., Tropepe, V., Donoviel, D., Elia, A.J., Nye, J.S., Conlon, R.A., Mak, T.W., Bernstein, A., and van der Kooy, D. (2002). Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16, 846–858.PubMedCentralGoogle Scholar
  59. Hitoshi, S., Ishino, Y., Kumar, A., Jasmine, S., Tanaka, K.F., Kondo, T., Kato, S., Hosoya, T., Hotta, Y., and Ikenaka, K. (2011). Mammalian Gcm genes induce Hes5 expression by active DNA demethylation and induce neural stem cells. Nat Neurosci 14, 957–964.Google Scholar
  60. Hitoshi, S., Seaberg, R.M., Koscik, C., Alexson, T., Kusunoki, S., Kanazawa, I., Tsuji, S., and van der Kooy, D. (2004). Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18, 1806–1811.PubMedCentralGoogle Scholar
  61. Holliday, R. (2006). Epigenetics: a historical overview. Epigenetics 1, 76–80.Google Scholar
  62. Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E., and Gage, F.H. (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 101, 16659–16664.PubMedCentralGoogle Scholar
  63. Huarte, M., Lan, F., Kim, T., Vaughn, M.W., Zaratiegui, M., Martienssen, R.A., Buratowski, S., and Shi, Y. (2007). The fission yeast Jmj2 reverses histone H3 Lysine 4 trimethylation. J Biol Chem 282, 21662–21670.Google Scholar
  64. Iorio, M.V., Piovan, C., and Croce, C.M. (2010). Interplay between microRNAs and the epigenetic machinery: an intricate network. Biochim Biophys Acta 1799, 694–701.Google Scholar
  65. Irmady, K., Zechel, S., and Unsicker, K. (2011). Fibroblast growth factor 2 regulates astrocyte differentiation in a region-specific manner in the hindbrain. Glia 59, 708–719.Google Scholar
  66. Iwase, S., Lan, F., Bayliss, P., de la Torre-Ubieta, L., Huarte, M., Qi, H.H., Whetstine, J.R., Bonni, A., Roberts, T.M., and Shi, Y. (2007). The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 128, 1077–1088.Google Scholar
  67. Jacobson, M. (1991). Developmental neurobiology, 3rd edn. New York: Plenum Press.Google Scholar
  68. Jaenisch, R., and Bird, A. (2003). Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33, 245–254.Google Scholar
  69. Jamniczky, H.A., Boughner, J.C., Rolian, C., Gonzalez, P.N., Powell, C.D., Schmidt, E.J., Parsons, T.E., Bookstein, F.L., and Hallgrímsson, B. (2010). Rediscovering Waddington in the post-genomic age: Operationalising Waddington’s epigenetics reveals new ways to investigate the generation and modulation of phenotypic variation. Bioessays 32, 553–558.Google Scholar
  70. Jiang, H., Shukla, A., Wang, X., Chen, W.Y., Bernstein, B.E., and Roeder, R.G. (2011). Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 144, 513–525.PubMedCentralGoogle Scholar
  71. Joglekar, M.V., Joglekar, V.M., and Hardikar, A.A. (2009). Expression of islet-specific microRNAs during human pancreatic development. Gene Expr Patterns 9, 109–113.Google Scholar
  72. Juliandi, B., Abematsu, M., and Nakashima, K. (2010a). Chromatin remodeling in neural stem cell differentiation. Curr Opin Neurobiol 20, 408–415.Google Scholar
  73. Juliandi, B., Abematsu, M., and Nakashima, K. (2010b). Epigenetic regulation in neural stem cell differentiation. Dev Growth Differ 52, 493–504.Google Scholar
  74. Kapoor, A., Agius, F., and Zhu, J.K. (2005). Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett 579, 5889–5898.Google Scholar
  75. Kapsimali, M., Kloosterman, W.P., de Bruijn, E., Rosa, F., Plasterk, R.H., and Wilson, S.W. (2007). MicroRNAs show a wide diversity of expression profiles in the developing and mature central nervous system. Genome Biol 8, R173.PubMedCentralGoogle Scholar
  76. Kawaguchi, A., Miyata, T., Sawamoto, K., Takashita, N., Murayama, A., Akamatsu, W., Ogawa, M., Okabe, M., Tano, Y., Goldman, S.A., et al. (2001). Nestin-EGFP transgenic mice: visualization of the self-renewal and multipotency of CNS stem cells. Mol Cell Neurosci 17, 259–273.Google Scholar
  77. Kawase-Koga, Y., Low, R., Otaegi, G., Pollock, A., Deng, H., Eisenhaber, F., Maurer-Stroh, S., and Sun, T. (2010). RNAase-III enzyme Dicer maintains signaling pathways for differentiation and survival in mouse cortical neural stem cells. J Cell Sci 123, 586–594.PubMedCentralGoogle Scholar
  78. Kennison, J.A. (1995). The Polycomb and trithorax group proteins of Drosophila: trans-regulators of homeotic gene function. Annu Rev Genet 29, 289–303.Google Scholar
  79. Kohyama, J., Kojima, T., Takatsuka, E., Yamashita, T., Namiki, J., Hsieh, J., Gage, F.H., Namihira, M., Okano, H., Sawamoto, K., et al. (2008). Epigenetic regulation of neural cell differentiation plasticity in the adult mammalian brain. Proc Natl Acad Sci U S A 105, 18012–18017.PubMedCentralGoogle Scholar
  80. Kornberg, R.D. (1974). Chromatin structure: a repeating unit of histones and DNA. Science 184, 868–871.Google Scholar
  81. Kouzarides, T. (2007). Chromatin modifications and their function. Cell 128, 693–705.Google Scholar
  82. Ku, M., Koche, R.P., Rheinbay, E., Mendenhall, E.M., Endoh, M., Mikkelsen, T.S., Presser, A., Nusbaum, C., Xie, X., Chi, A.S., et al. (2008). Genomewide analysis of PRC1 and PRC2 occupancy identifies two classes of bivalent domains. PLoS Genet 4, e1000242.PubMedCentralGoogle Scholar
  83. Kuo, M.H., and Allis, C.D. (1998). Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20, 615–626.Google Scholar
  84. Lan, F., Bayliss, P.E., Rinn, J.L., Whetstine, J.R., Wang, J.K., Chen, S., Iwase, S., Alpatov, R., Issaeva, I., Canaani, E., et al. (2007). A histone H3 lysine 27 demethylase regulates animal posterior development. Nature 449, 689–694.Google Scholar
  85. Lee, M.G., Norman, J., Shilatifard, A., and Shiekhattar, R. (2007a). Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 128, 877–887.Google Scholar
  86. Lee, M.G., Villa, R., Trojer, P., Norman, J., Yan, K.P., Reinberg, D., Di Croce, L., and Shiekhattar, R. (2007b). Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 318, 447–450.Google Scholar
  87. Lee, Y.S., Nakahara, K., Pham, J.W., Kim, K., He, Z., Sontheimer, E.J., and Carthew, R.W. (2004). Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81.Google Scholar
  88. Lessard, J., Wu, J.I., Ranish, J.A., Wan, M., Winslow, M.M., Staahl, B.T., Wu, H., Aebersold, R., Graef, I.A., and Crabtree, G.R. (2007). An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 55, 201–215.PubMedCentralGoogle Scholar
  89. Leucht, C., Stigloher, C., Wizenmann, A., Klafke, R., Folchert, A., and Bally-Cuif, L. (2008). MicroRNA-9 directs late organizer activity of the midbrain-hindbrain boundary. Nat Neurosci 11, 641–648.Google Scholar
  90. Li, E., Bestor, T.H., and Jaenisch, R. (1992). Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69, 915–926.Google Scholar
  91. Li, J.Y., Pu, M.T., Hirasawa, R., Li, B.Z., Huang, Y.N., Zeng, R., Jing, N.H., Chen, T., Li, E., Sasaki, H., et al. (2007). Synergistic function of DNA methyltransferases Dnmt3a and Dnmt3b in the methylation of Oct4 and Nanog. Mol Cell Biol 27, 8748–8759.PubMedCentralGoogle Scholar
  92. Li, X., Barkho, B.Z., Luo, Y., Smrt, R.D., Santistevan, N.J., Liu, C., Kuwabara, T., Gage, F.H., and Zhao, X. (2008). Epigenetic regulation of the stem cell mitogen Fgf-2 by Mbd1 in adult neural stem/progenitor cells. J Biol Chem 283, 27644–27652.PubMedCentralGoogle Scholar
  93. Liu, C., Teng, Z.Q., Santistevan, N.J., Szulwach, K.E., Guo, W., Jin, P., and Zhao, X. (2010). Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6, 433–444.PubMedCentralGoogle Scholar
  94. Lunyak, V.V., and Rosenfeld, M.G. (2005). No rest for REST: REST/NRSF regulation of neurogenesis. Cell 121, 499–501.Google Scholar
  95. Lyle, R., Watanabe, D., te Vruchte, D., Lerchner, W., Smrzka, O.W., Wutz, A., Schageman, J., Hahner, L., Davies, C., and Barlow, D.P. (2000). The imprinted antisense RNA at the Igf2r locus overlaps but does not imprint Mas1. Nat Genet 25, 19–21.Google Scholar
  96. Ma, D.K., Jang, M.H., Guo, J.U., Kitabatake, Y., Chang, M.L., Pow-Anpongkul, N., Flavell, R.A., Lu, B., Ming, G.L., and Song, H. (2009). Neuronal activity-induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323, 1074–1077.PubMedCentralGoogle Scholar
  97. Ma, D.K., Marchetto, M.C., Guo, J.U., Ming, G.L., Gage, F.H., and Song, H. (2010). Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13, 1338–1344.PubMedCentralGoogle Scholar
  98. Martens, J.A., and Winston, F. (2003). Recent advances in understanding chromatin remodeling by Swi/Snf complexes. Curr Opin Genet Dev 13, 136–142.Google Scholar
  99. Mastroeni, D., Grover, A., Delvaux, E., Whiteside, C., Coleman, P.D., and Rogers, J. (2011). Epigenetic mechanisms in Alzheimer’s disease. Neurobiol Aging 32, 1161–1180.PubMedCentralGoogle Scholar
  100. Matsumoto, S., Banine, F., Struve, J., Xing, R., Adams, C., Liu, Y., Metzger, D., Chambon, P., Rao, M.S., and Sherman, L.S. (2006). Brg1 is required for murine neural stem cell maintenance and gliogenesis. Dev Biol 289, 372–383.Google Scholar
  101. Mattick, J.S., and Makunin, I.V. (2005). Small regulatory RNAs in mammals. Hum Mol Genet 14, R121–R132.Google Scholar
  102. Mattick, J.S., and Makunin, I.V. (2006). Non-coding RNA. Hum Mol Genet 15, R17–R29.Google Scholar
  103. Mehler, M.F. (2008). Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol 86, 305–341.PubMedCentralGoogle Scholar
  104. Mehler, M.F., and Mattick, J.S. (2006). Non-coding RNAs in the nervous system. J Physiol 575, 333–341.PubMedCentralGoogle Scholar
  105. Mehler, M.F., and Mattick, J.S. (2007). Noncoding RNAs and RNA editing in brain development, functional diversification, and neurological disease. Physiol Rev 87, 799–823.Google Scholar
  106. Meissner, A., Mikkelsen, T.S., Gu, H., Wernig, M., Hanna, J., Sivachenko, A., Zhang, X., Bernstein, B.E., Nusbaum, C., Jaffe, D.B., et al. (2008). Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770.PubMedCentralGoogle Scholar
  107. Métivier, R., Gallais, R., Tiffoche, C., Le Péron, C., Jurkowska, R.Z., Carmouche, R.P., Ibberson, D., Barath, P., Demay, F., Reid, G., et al. (2008). Cyclical DNA methylation of a transcriptionally active promoter. Nature 452, 45–50.Google Scholar
  108. Moazed, D. (2009). Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420.PubMedCentralGoogle Scholar
  109. Mohn, F., Weber, M., Rebhan, M., Roloff, T.C., Richter, J., Stadler, M.B., Bibel, M., and Schübeler, D. (2008). Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors. Mol Cell 30, 755–766.Google Scholar
  110. Montgomery, R.L., Hsieh, J., Barbosa, A.C., Richardson, J.A., and Olson, E.N. (2009). Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 106, 7876–7881.PubMedCentralGoogle Scholar
  111. Morange, M. (2002). The relations between genetics and epigenetics: a historical point of view. Ann N Y Acad Sci 981, 50–60.Google Scholar
  112. Mosammaparast, N., and Shi, Y. (2010). Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem 79, 155–179.Google Scholar
  113. Nakamura, Y., Sakakibara, S., Miyata, T., Ogawa, M., Shimazaki, T., Weiss, S., Kageyama, R., and Okano, H. (2000). The bHLH gene hes1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 20, 283–293.Google Scholar
  114. Namihira, M., Kohyama, J., Abematsu, M., and Nakashima, K. (2008). Epigenetic mechanisms regulating fate specification of neural stem cells. Philos Trans R Soc Lond B Biol Sci 363, 2099–2109.PubMedCentralGoogle Scholar
  115. Nekrasov, M., Wild, B., and Müller, J. (2005). Nucleosome binding and histone methyltransferase activity of Drosophila PRC2. EMBO Rep 6, 348–353.PubMedCentralGoogle Scholar
  116. Nguyen, S., Meletis, K., Fu, D., Jhaveri, S., and Jaenisch, R. (2007). Ablation of de novo DNA methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects and shortened lifespan. Dev Dyn 236, 1663–1676.Google Scholar
  117. Niehrs, C. (2009). Active DNA demethylation and DNA repair. Differentiation 77, 1–11.Google Scholar
  118. Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999). DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99, 247–257.Google Scholar
  119. Ooi, S.K., and Bestor, T.H. (2008a). The colorful history of active DNA demethylation. Cell 133, 1145–1148.Google Scholar
  120. Ooi, S.K., and Bestor, T.H. (2008b). Cytosine methylation: remaining faithful. Curr Biol 18, R174–R176.Google Scholar
  121. Pastor, W.A., Pape, U.J., Huang, Y., Henderson, H.R., Lister, R., Ko, M., McLoughlin, E.M., Brudno, Y., Mahapatra, S., Kapranov, P., et al. (2011). Genome-wide mapping of 5-hydroxymethylcytosine in embryonic stem cells. Nature 473, 394–397.PubMedCentralGoogle Scholar
  122. Pazin, M.J., and Kadonaga, J.T. (1997). What’s up and down with histone deacetylation and transcription? Cell 89, 325–328.Google Scholar
  123. Qian, X., Goderie, S.K., Shen, Q., Stern, J.H., and Temple, S. (1998). Intrinsic programs of patterned cell lineages in isolated vertebrate CNS ventricular zone cells. Development 125, 3143–3152.Google Scholar
  124. Qian, X., Shen, Q., Goderie, S.K., He, W., Capela, A., Davis, A.A., and Temple, S. (2000). Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80.Google Scholar
  125. Rai, K., Huggins, I.J., James, S.R., Karpf, A.R., Jones, D.A., and Cairns, B.R. (2008). DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135, 1201–1212.PubMedCentralGoogle Scholar
  126. Randazzo, F.M., Khavari, P., Crabtree, G., Tamkun, J., and Rossant, J. (1994). brg1: a putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Dev Biol 161, 229–242.Google Scholar
  127. Ravin, R., Hoeppner, D.J., Munno, D.M., Carmel, L., Sullivan, J., Levitt, D.L., Miller, J.L., Athaide, C., Panchision, D.M., and McKay, R.D. (2008). Potency and fate specification in CNS stem cell populations in vitro. Cell Stem Cell 3, 670–680.Google Scholar
  128. Reynolds, B.A., and Weiss, S. (1992). Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255, 1707–1710.Google Scholar
  129. Ringrose, L., and Paro, R. (2004). Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38, 413–443.Google Scholar
  130. Robertson, K.D., Ait-Si-Ali, S., Yokochi, T., Wade, P.A., Jones, P.L., and Wolffe, A.P. (2000). DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat Genet 25, 338–342.Google Scholar
  131. Robertson, K.D., and Wolffe, A.P. (2000). DNA methylation in health and disease. Nat Rev Genet 1, 11–19.Google Scholar
  132. Roth, S.Y., and Allis, C.D. (1996). Histone acetylation and chromatin assembly: a single escort, multiple dances? Cell 87, 5–8.Google Scholar
  133. Rougeulle, C., Chaumeil, J., Sarma, K., Allis, C.D., Reinberg, D., Avner, P., and Heard, E. (2004). Differential histone H3 Lys-9 and Lys-27 methylation profiles on the X chromosome. Mol Cell Biol 24, 5475–5484.PubMedCentralGoogle Scholar
  134. Sato, S., Yagi, S., Arai, Y., Hirabayashi, K., Hattori, N., Iwatani, M., Okita, K., Ohgane, J., Tanaka, S., Wakayama, T., et al. (2010). Genome-wide DNA methylation profile of tissue-dependent and differentially methylated regions (T-DMRs) residing in mouse pluripotent stem cells. Genes Cells 15, 607–618.Google Scholar
  135. Schmitz, S.U., Albert, M., Malatesta, M., Morey, L., Johansen, J.V., Bak, M., Tommerup, N., Abarrategui, I., and Helin, K. (2011). Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO J 30, 4586–4600.PubMedCentralGoogle Scholar
  136. Setoguchi, H., Namihira, M., Kohyama, J., Asano, H., Sanosaka, T., and Nakashima, K. (2006). Methyl-CpG binding proteins are involved in restricting differentiation plasticity in neurons. J Neurosci Res 84, 969–979.Google Scholar
  137. Shen, Q., and Temple, S. (2009). Fine control: microRNA regulation of adult neurogenesis. Nat Neurosci 12, 369–370.Google Scholar
  138. Shen, Q., Wang, Y., Dimos, J.T., Fasano, C.A., Phoenix, T.N., Lemischka, I.R., Ivanova, N.B., Stifani, S., Morrisey, E.E., and Temple, S. (2006). The timing of cortical neurogenesis is encoded within lineages of individual progenitor cells. Nat Neurosci 9, 743–751.Google Scholar
  139. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J.R., Cole, P.A., Casero, R.A., and Shi, Y. (2004). Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953.Google Scholar
  140. Shibata, M., Kurokawa, D., Nakao, H., Ohmura, T., and Aizawa, S. (2008). MicroRNA-9 modulates Cajal-Retzius cell differentiation by suppressing Foxg1 expression in mouse medial pallium. J Neurosci 28, 10415–10421.Google Scholar
  141. Smith, C.L., and Peterson, C.L. (2005). A conserved Swi2/Snf2 ATPase motif couples ATP hydrolysis to chromatin remodeling. Mol Cell Biol 25, 5880–5892.PubMedCentralGoogle Scholar
  142. Smith, J.L., and Schoenwolf, G.C. (1997). Neurulation: coming to closure. Trends Neurosci 20, 510–517.Google Scholar
  143. So, A.Y., Jung, J.W., Lee, S., Kim, H.S., and Kang, K.S. (2011). DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6, e19503.PubMedCentralGoogle Scholar
  144. Song, C.X., Szulwach, K.E., Fu, Y., Dai, Q., Yi, C., Li, X., Li, Y., Chen, C.H., Zhang, W., Jian, X., et al. (2011). Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29, 68–72.PubMedCentralGoogle Scholar
  145. Song, M.R., and Ghosh, A. (2004). FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 7, 229–235.Google Scholar
  146. Sterner, D.E., and Berger, S.L. (2000). Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 64, 435–459.PubMedCentralGoogle Scholar
  147. Storz, G. (2002). An expanding universe of noncoding RNAs. Science 296, 1260–1263.Google Scholar
  148. Sun, G., Fu, C., Shen, C., and Shi, Y. (2011). Histone deacetylases in neural stem cells and induced pluripotent stem cells. J Biomed Biotechnol 2011, 835968.Google Scholar
  149. Sun, G., Yu, R.T., Evans, R.M., and Shi, Y. (2007). Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl Acad Sci U S A 104, 15282–15287.PubMedCentralGoogle Scholar
  150. Surani, M.A., Hayashi, K., and Hajkova, P. (2007). Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762.Google Scholar
  151. Suzuki, M.M., and Bird, A. (2008). DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9, 465–476.Google Scholar
  152. Temple, S. (2001). The development of neural stem cells. Nature 414, 112–117.Google Scholar
  153. Testa, G. (2011). The time of timing: how Polycomb proteins regulate neurogenesis. Bioessays 33, 519–528.Google Scholar
  154. Tropepe, V., Sibilia, M., Ciruna, B.G., Rossant, J., Wagner, E.F., and van der Kooy, D. (1999). Distinct neural stem cells proliferate in response to EGF and FGF in the developing mouse telencephalon. Dev Biol 208, 166–188.Google Scholar
  155. Tsujimura, K., Abematsu, M., Kohyama, J., Namihira, M., and Nakashima, K. (2009). Neuronal differentiation of neural precursor cells is promoted by the methyl-CpG-binding protein MeCP2. Exp Neurol 219, 104–111.Google Scholar
  156. Viré, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C., Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J.M., et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439, 871–874.Google Scholar
  157. Wade, P.A., Pruss, D., and Wolffe, A.P. (1997). Histone acetylation: chromatin in action. Trends Biochem Sci 22, 128–132.Google Scholar
  158. Walsh, C.P., and Bestor, T.H. (1999). Cytosine methylation and mammalian development. Genes Dev 13, 26–34.PubMedCentralGoogle Scholar
  159. Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S., and Zhang, Y. (2004). Role of histone H2A ubiquitination in Polycomb silencing. Nature 431, 873–878.Google Scholar
  160. Weiss, A., and Cedar, H. (1997). The role of DNA demethylation during development. Genes Cells 2, 481–486.Google Scholar
  161. Whetstine, J.R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., Spooner, E., Li, E., Zhang, G., Colaiacovo, M., et al. (2006). Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 125, 467–481.Google Scholar
  162. Wilks, A., Seldran, M., and Jost, J.P. (1984). An estrogen-dependent demethylation at the 5′ end of the chicken vitellogenin gene is independent of DNA synthesis. Nucleic Acids Res 12, 1163–1177.PubMedCentralGoogle Scholar
  163. Wood, H.B., and Episkopou, V. (1999). Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech Dev 86, 197–201.Google Scholar
  164. Wu, H., Coskun, V., Tao, J., Xie, W., Ge, W., Yoshikawa, K., Li, E., Zhang, Y., and Sun, Y.E. (2010a). Dnmt3a-dependent nonpromoter DNA methylation facilitates transcription of neurogenic genes. Science 329, 444–448.PubMedCentralGoogle Scholar
  165. Wu, H., D’Alessio, A.C., Ito, S., Wang, Z., Cui, K., Zhao, K., Sun, Y.E., and Zhang, Y. (2011a). Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 25, 679–684.PubMedCentralGoogle Scholar
  166. Wu, H., D’Alessio, A.C., Ito, S., Xia, K., Wang, Z., Cui, K., Zhao, K., Sun, Y.E., and Zhang, Y. (2011b). Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393.PubMedCentralGoogle Scholar
  167. Wu, H., and Sun, Y.E. (2009). Reversing DNA methylation: new insights from neuronal activity-induced Gadd45b in adult neurogenesis. Sci Signal 2, pe17.Google Scholar
  168. Wu, H., Tao, J., Chen, P.J., Shahab, A., Ge, W., Hart, R.P., Ruan, X., Ruan, Y., and Sun, Y.E. (2010b). Genome-wide analysis reveals methyl-CpG-binding protein 2-dependent regulation of microRNAs in a mouse model of Rett syndrome. Proc Natl Acad Sci U S A 107, 18161–18166.PubMedCentralGoogle Scholar
  169. Wu, J., and Xie, X. (2006). Comparative sequence analysis reveals an intricate network among REST, CREB and miRNA in mediating neuronal gene expression. Genome Biol 7, R85.PubMedCentralGoogle Scholar
  170. Wu, J.I., Lessard, J., Olave, I.A., Qiu, Z., Ghosh, A., Graef, I.A., and Crabtree, G.R. (2007). Regulation of dendritic development by neuron-specific chromatin remodeling complexes. Neuron 56, 94–108.Google Scholar
  171. Xu, Y., Wu, F., Tan, L., Kong, L., Xiong, L., Deng, J., Barbera, A.J., Zheng, L., Zhang, H., Huang, S., et al. (2011). Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Mol Cell 42, 451–464.PubMedCentralGoogle Scholar
  172. Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., and Zhang, Y. (2006). JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell 125, 483–495.Google Scholar
  173. Ye, F., Chen, Y., Hoang, T., Montgomery, R.L., Zhao, X.H., Bu, H., Hu, T., Taketo, M.M., van Es, J.H., Clevers, H., et al. (2009). HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the beta-catenin-TCF interaction. Nat Neurosci 12, 829–838.PubMedCentralGoogle Scholar
  174. Yoder, J.A., Walsh, C.P., and Bestor, T.H. (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13, 335–340.Google Scholar
  175. Yoo, A.S., Staahl, B.T., Chen, L., and Crabtree, G.R. (2009). MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 460, 642–646.PubMedCentralGoogle Scholar
  176. Yoo, A.S., Sun, A.X., Li, L., Shcheglovitov, A., Portmann, T., Li, Y., Lee-Messer, C., Dolmetsch, R.E., Tsien, R.W., and Crabtree, G.R. (2011). MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 476, 228–231.PubMedCentralGoogle Scholar
  177. Yu, I.T., Park, J.Y., Kim, S.H., Lee, J.S., Kim, Y.S., and Son, H. (2009). Valproic acid promotes neuronal differentiation by induction of proneural factors in association with H4 acetylation. Neuropharmacology 56, 473–480.Google Scholar
  178. Zhan, X., Shi, X., Zhang, Z., Chen, Y., and Wu, J.I. (2011). Dual role of Brg chromatin remodeling factor in Sonic hedgehog signaling during neural development. Proc Natl Acad Sci U S A 108, 12758–12763.PubMedCentralGoogle Scholar
  179. Zhang, Y., and Reinberg, D. (2001). Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 15, 2343–2360.Google Scholar
  180. Zhao, C., Sun, G., Li, S., and Shi, Y. (2009). A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16, 365–371.PubMedCentralGoogle Scholar
  181. Zhao, X., Ueba, T., Christie, B.R., Barkho, B., McConnell, M.J., Nakashima, K., Lein, E.S., Eadie, B.D., Willhoite, A.R., Muotri, A.R., et al. (2003). Mice lacking methyl-CpG binding protein 1 have deficits in adult neurogenesis and hippocampal function. Proc Natl Acad Sci U S A 100, 6777–6782.PubMedCentralGoogle Scholar
  182. Zhao, Z., Yu, Y., Meyer, D., Wu, C., and Shen, W.H. (2005). Prevention of early flowering by expression of FLOWERING LOCUS C requires methylation of histone H3 K36. Nat Cell Biol 7, 1256–1260.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua Center for Life SciencesTsinghua UniversityBeijingChina
  2. 2.Department of PharmacyTianjin Children’s HospitalTianjinChina

Personalised recommendations