Protein & Cell

, Volume 3, Issue 4, pp 305–310 | Cite as

Hippo pathway in intestinal homeostasis and tumorigenesis

  • Lanfen Chen
  • Funiu Qin
  • Xianming Deng
  • Joseph Avruch
  • Dawang Zhou


The Hippo pathway plays a crucial role in controlling organ size by inhibiting cell proliferation and promoting cell death. Recent findings implicate that this pathway is involved in the process of intestinal regeneration and tumorigenesis. Here we summarize current studies for the function of the Hippo signaling pathway in intestinal homeostasis, regeneration and tumorigenesis, and the crosstalk between the Hippo signaling pathway and other major signaling pathways, i.e. Wnt, Notch and Jak/Stat signaling pathways in intestinal compartment.


Hippo/Mst1/2 YAP/Yorkie intestinal stem cells 


  1. Barker, N., Bartfeld, S., and Clevers, H. (2010). Tissue-resident adult stem cell populations of rapidly self-renewing organs. Cell Stem Cell 7, 656–670.CrossRefPubMedGoogle Scholar
  2. Cai, J., Zhang, N., Zheng, Y., de Wilde, R.F., Maitra, A., and Pan, D. (2010). The Hippo signaling pathway restricts the oncogenic potential of an intestinal regeneration program. Genes Dev 24, 2383–2388.PubMedCentralCrossRefPubMedGoogle Scholar
  3. Camargo, F.D., Gokhale, S., Johnnidis, J.B., Fu, D., Bell, G.W., Jaenisch, R., and Brummelkamp, T.R. (2007). YAP1 increases organ size and expands undifferentiated progenitor cells. Curr Biol 17, 2054–2060.CrossRefPubMedGoogle Scholar
  4. Casali, A., and Batlle, E. (2009). Intestinal stem cells in mammals and Drosophila. Cell Stem Cell 4, 124–127.CrossRefPubMedGoogle Scholar
  5. Creasy, C.L., and Chernoff, J. (1995). Cloning and characterization of a member of the MST subfamily of Ste20-like kinases. Gene 167, 303–306.CrossRefPubMedGoogle Scholar
  6. Crosnier, C., Stamataki, D., and Lewis, J. (2006). Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7, 349–359.CrossRefPubMedGoogle Scholar
  7. Dong, J., Feldmann, G., Huang, J., Wu, S., Zhang, N., Comerford, S.A., Gayyed, M.F., Anders, R.A., Maitra, A., and Pan, D. (2007). Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Harvey, K.F., Pfleger, C.M., and Hariharan, I.K. (2003). The Drosophila Mst ortholog, hippo, restricts growth and cell proliferation and promotes apoptosis. Cell 114, 457–467.CrossRefPubMedGoogle Scholar
  9. Heallen, T., Zhang, M., Wang, J., Bonilla-Claudio, M., Klysik, E., Johnson, R.L., and Martin, J.F. (2011). Hippo pathway inhibits Wnt signaling to restrain cardiomyocyte proliferation and heart size. Science 332, 458–461.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Huang, J., Wu, S., Barrera, J., Matthews, K., and Pan, D. (2005). The Hippo signaling pathway coordinately regulates cell proliferation and apoptosis by inactivating Yorkie, the Drosophila Homolog of YAP. Cell 122, 421–434.CrossRefPubMedGoogle Scholar
  11. Hwang, E., Ryu, K.S., Pääkkönen, K., Güntert, P., Cheong, H.K., Lim, D.S., Lee, J.O., Jeon, Y.H., and Cheong, C. (2007). Structural insight into dimeric interaction of the SARAH domains from Mst1 and RASSF family proteins in the apoptosis pathway. Proc Natl Acad Sci U S A 104, 9236–9241.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Imajo, M., Miyatake, K., Iimura, A., Miyamoto, A., and Nishida, E. (2012). A molecular mechanism that links Hippo signalling to the inhibition of Wnt/beta-catenin signalling. EMBO J 31, 1109–1122.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Jarriault, S., Brou, C., Logeat, F., Schroeter, E.H., Kopan, R., and Israel, A. (1995). Signalling downstream of activated mammalian Notch. Nature 377, 355–358.CrossRefPubMedGoogle Scholar
  14. Jiang, H., Patel, P.H., Kohlmaier, A., Grenley, M.O., McEwen, D.G., and Edgar, B.A. (2009). Cytokine/Jak/Stat signaling mediates regeneration and homeostasis in the Drosophila midgut. Cell 137, 1343–1355.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Justice, R.W., Zilian, O., Woods, D.F., Noll, M., and Bryant, P.J. (1995). The Drosophila tumor suppressor gene warts encodes a homolog of human myotonic dystrophy kinase and is required for the control of cell shape and proliferation. Genes Dev 9, 534–546.CrossRefPubMedGoogle Scholar
  16. Kanai, F., Marignani, P.A., Sarbassova, D., Yagi, R., Hall, R.A., Donowitz, M., Hisaminato, A., Fujiwara, T., Ito, Y., Cantley, L.C., et al. (2000). TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J 19, 6778–6791.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Karpowicz, P., Perez, J., and Perrimon, N. (2010). The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development 137, 4135–4145.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Lai, Z.C., Wei, X., Shimizu, T., Ramos, E., Rohrbaugh, M., Nikolaidis, N., Ho, L.L., and Li, Y. (2005). Control of cell proliferation and apoptosis by mob as tumor suppressor, mats. Cell 120, 675–685.CrossRefPubMedGoogle Scholar
  19. Lee, K.P., Lee, J.H., Kim, T.S., Kim, T.H., Park, H.D., Byun, J.S., Kim, M.C., Jeong, W.I., Calvisi, D.F., Kim, J.M., et al. (2010). The Hippo-Salvador pathway restrains hepatic oval cell proliferation, liver size, and liver tumorigenesis. Proc Natl Acad Sci U S A 107, 8248–8253.PubMedCentralCrossRefPubMedGoogle Scholar
  20. Lehtinen, M.K., Yuan, Z., Boag, P.R., Yang, Y., Villén, J., Becker, E.B., DiBacco, S., de la Iglesia, N., Gygi, S., Blackwell, T.K., et al. (2006). A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 125, 987–1001.CrossRefPubMedGoogle Scholar
  21. Lian, I., Kim, J., Okazawa, H., Zhao, J., Zhao, B., Yu, J., Chinnaiyan, A., Israel, M.A., Goldstein, L.S., Abujarour, R., et al. (2010). The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev 24, 1106–1118.PubMedCentralCrossRefPubMedGoogle Scholar
  22. Lin, G., Xu, N., and Xi, R. (2008). Paracrine Wingless signalling controls self-renewal of Drosophila intestinal stem cells. Nature 455, 1119–1123.CrossRefPubMedGoogle Scholar
  23. Lu, L., Li, Y., Kim, S.M., Bossuyt, W., Liu, P., Qiu, Q., Wang, Y., Halder, G., Finegold, M.J., Lee, J.S., et al. (2010). Hippo signaling is a potent in vivo growth and tumor suppressor pathway in the mammalian liver. Proc Natl Acad Sci U S A 107, 1437–1442.PubMedCentralCrossRefPubMedGoogle Scholar
  24. Luca, F.C., and Winey, M. (1998). MOB1, an essential yeast gene required for completion of mitosis and maintenance of ploidy. Mol Biol Cell 9, 29–46.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Micchelli, C.A., and Perrimon, N. (2006). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475–479.CrossRefPubMedGoogle Scholar
  26. Miyamoto, S., and Rosenberg, D.W. (2011). Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci 102, 1938–1942.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Ohlstein, B., and Spradling, A. (2006). The adult Drosophila posterior midgut is maintained by pluripotent stem cells. Nature 439, 470–474.CrossRefPubMedGoogle Scholar
  28. Pannequin, J., Bonnans, C., Delaunay, N., Ryan, J., Bourgaux, J.F., Joubert, D., and Hollande, F. (2009). The wnt target jagged-1 mediates the activation of notch signaling by progastrin in human colorectal cancer cells. Cancer Res 69, 6065–6073.CrossRefPubMedGoogle Scholar
  29. Praskova, M., Xia, F., and Avruch, J. (2008). MOBKL1A/MOBKL1B phosphorylation by MST1 and MST2 inhibits cell proliferation. Curr Biol 18, 311–321.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Ren, F., Wang, B., Yue, T., Yun, E.Y., Ip, Y.T., and Jiang, J. (2010). Hippo signaling regulates Drosophila intestine stem cell proliferation through multiple pathways. Proc Natl Acad Sci U S A 107, 21064–21069.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Rodilla, V., Villanueva, A., Obrador-Hevia, A., Robert-Moreno, A., Fernández-Majada, V., Grilli, A., López-Bigas, N., Bellora, N., Albà, M.M., Torres, F., et al. (2009). Jagged1 is the pathological link between Wnt and Notch pathways in colorectal cancer. Proc Natl Acad Sci U S A 106, 6315–6320.PubMedCentralCrossRefPubMedGoogle Scholar
  32. Schlegelmilch, K., Mohseni, M., Kirak, O., Pruszak, J., Rodriguez, J.R., Zhou, D., Kreger, B.T., Vasioukhin, V., Avruch, J., Brummelkamp, T.R., et al. (2011). Yap1 acts downstream of -catenin to control epidermal proliferation. Cell 144, 782–795.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Shaw, R.L., Kohlmaier, A., Polesello, C., Veelken, C., Edgar, B.A., and Tapon, N. (2010). The Hippo pathway regulates intestinal stem cell proliferation during Drosophila adult midgut regeneration. Development 137, 4147–4158.PubMedCentralCrossRefPubMedGoogle Scholar
  34. Song, H., Mak, K.K., Topol, L., Yun, K., Hu, J., Garrett, L., Chen, Y., Park, O., Chang, J., Simpson, R.M., et al. (2010). Mammalian Mst1 and Mst2 kinases play essential roles in organ size control and tumor suppression. Proc Natl Acad Sci U S A 107, 1431–1436.PubMedCentralCrossRefPubMedGoogle Scholar
  35. St John, M.A., Tao, W., Fei, X., Fukumoto, R., Carcangiu, M.L., Brownstein, D.G., Parlow, A.F., McGrath, J., and Xu, T. (1999). Mice deficient of Lats1 develop soft-tissue sarcomas, ovarian tumours and pituitary dysfunction. Nat Genet 21, 182–186.CrossRefPubMedGoogle Scholar
  36. Staley, B.K., and Irvine, K.D. (2010). Warts and Yorkie mediate intestinal regeneration by influencing stem cell proliferation. Curr Biol 20, 1580–1587.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Steinhardt, A.A., Gayyed, M.F., Klein, A.P., Dong, J., Maitra, A., Pan, D., Montgomery, E.A., and Anders, R.A. (2008). Expression of Yes-associated protein in common solid tumors. Hum Pathol 39, 1582–1589.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Sudol, M. (1994). Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9, 2145–2152.PubMedGoogle Scholar
  39. Tapon, N., Harvey, K.F., Bell, D.W., Wahrer, D.C., Schiripo, T.A., Haber, D.A., and Hariharan, I.K. (2002). salvador Promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467–478.CrossRefPubMedGoogle Scholar
  40. Terzic, J., Grivennikov, S., Karin, E., and Karin, M. (2010). Inflammation and colon cancer. Gastroenterology 138, 2101–2114 e2105.CrossRefPubMedGoogle Scholar
  41. van der Flier, L.G., and Clevers, H. (2009). Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71, 241–260.CrossRefPubMedGoogle Scholar
  42. Van der Flier, L.G., Sabates-Bellver, J., Oving, I., Haegebarth, A., De Palo, M., Anti, M., Van Gijn, M.E., Suijkerbuijk, S., Van de Wetering, M., Marra, G., et al. (2007). The Intestinal Wnt/TCF Signature. Gastroenterology 132, 628–632.CrossRefPubMedGoogle Scholar
  43. Varelas, X., Miller, B.W., Sopko, R., Song, S., Gregorieff, A., Fellouse, F.A., Sakuma, R., Pawson, T., Hunziker, W., McNeill, H., et al. (2010). The Hippo pathway regulates Wnt/beta-catenin signaling. Dev Cell 18, 579–591.CrossRefPubMedGoogle Scholar
  44. Wang, X., Su, L., and Ou, Q. (2011). Yes-associated protein promotes tumour development in luminal epithelial derived breast cancer. Eur J Cancer. 2011 Nov 4. [Epub ahead of print]Google Scholar
  45. Wei, X., Shimizu, T., and Lai, Z.C. (2007). Mob as tumor suppressor is activated by Hippo kinase for growth inhibition in Drosophila. EMBO J 26, 1772–1781.PubMedCentralCrossRefPubMedGoogle Scholar
  46. Wu, S., Huang, J., Dong, J., and Pan, D. (2003). hippo encodes a Ste-20 family protein kinase that restricts cell proliferation and promotes apoptosis in conjunction with salvador and warts. Cell 114, 445–456.CrossRefPubMedGoogle Scholar
  47. Zhao, B., Wei, X., Li, W., Udan, R. S., Yang, Q., Kim, J., Ikenoue, T., Yu, J., Li, L., et al. (2007). Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev 21, 2747–2761.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Zhao, B., Ye, X., Yu, J., Li, L., Li, W., Li, S., Yu, J., Lin, J. D., Wang, C. Y., Chinnaiyan, A. M., et al. (2008). TEAD mediates YAP-dependent gene induction and growth control. Genes Dev 22, 1962–1971.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Zhou, D., Conrad, C., Xia, F., Park, J.S., Payer, B., Yin, Y., Lauwers, G.Y., Thasler, W., Lee, J.T., Avruch, J., et al. (2009). Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. Cancer Cell 16, 425–438.PubMedCentralCrossRefPubMedGoogle Scholar
  50. Zhou, D., Medoff, B.D., Chen, L., Li, L., Zhang, X.F., Praskova, M., Liu, M., Landry, A., Blumberg, R.S., Boussiotis, V.A., et al. (2008). The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naïve T cells. Proc Natl Acad Sci U S A 105, 20321–20326.PubMedCentralCrossRefPubMedGoogle Scholar
  51. Zhou, D., Zhang, Y., Wu, H., Barry, E., Yin, Y., Lawrence, E., Dawson, D., Willis, J.E., Markowitz, S.D., Camargo, F.D., et al. (2011). Mst1 and Mst2 protein kinases restrain intestinal stem cell proliferation and colonic tumorigenesis by inhibition of Yes-associated protein (Yap) overabundance. Proc Natl Acad Sci U S A 108, E1312–E1320.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.State Key Laboratory of Stress Cell Biology, School of Life SciencesXiamen UniversityXiamenChina
  2. 2.Department of Molecular BiologyMassachusetts General HospitalBostonUSA
  3. 3.Department of MedicineHarvard Medical SchoolBostonUSA

Personalised recommendations