Advertisement

Protein & Cell

, Volume 4, Issue 2, pp 86–102 | Cite as

Closing the door to human immunodeficiency virus

  • Yuanxi Kang
  • Jia Guo
  • Zhiwei Chen
Review

Abstract

The pandemic of human immunodeficiency virus type one (HIV-1), the major etiologic agent of acquired immunodeficiency disease (AIDS), has led to over 33 million people living with the virus, among which 18 million are women and children. Until now, there is neither an effective vaccine nor a therapeutic cure despite over 30 years of efforts. Although the Thai RV144 vaccine trial has demonstrated an efficacy of 31.2%, an effective vaccine will likely rely on a breakthrough discovery of immunogens to elicit broadly reactive neutralizing antibodies, which may take years to achieve. Therefore, there is an urgency of exploring other prophylactic strategies. Recently, antiretroviral treatment as prevention is an exciting area of progress in HIV-1 research. Although effective, the implementation of such strategy faces great financial, political and social challenges in heavily affected regions such as developing countries where drug resistant viruses have already been found with growing incidence. Activating latently infected cells for therapeutic cure is another area of challenge. Since it is greatly difficult to eradicate HIV-1 after the establishment of viral latency, it is necessary to investigate strategies that may close the door to HIV-1. Here, we review studies on non-vaccine strategies in targeting viral entry, which may have critical implications for HIV-1 prevention.

Keywords

HIV-1 entry inhibitor vaccine antiretroviral antibody 

References

  1. Abdool Karim, S.S., Richardson, B.A., Ramjee, G., Hoffman, I.F., Chirenje, Z.M., Taha, T., Kapina, M., Maslankowski, L., Coletti, A., Profy, A., et al. (2011). Safety and effectiveness of BufferGel and 0.5% PRO2000 gel for the prevention of HIV infection in women. Aids 25, 957–966.Google Scholar
  2. Abela, I.A., Berlinger, L., Schanz, M., Reynell, L., Gunthard, H.F., Rusert, P., and Trkola, A. (2012). Cell-cell transmission enables HIV-1 to evade inhibition by potent CD4bs directed antibodies. PLoS Pathog 8, e1002634.Google Scholar
  3. Allaway, G.P., Davis-Bruno, K.L., Beaudry, G.A., Garcia, E.B., Wong, E.L., Ryder, A.M., Hasel, K.W., Gauduin, M.C., Koup, R.A., McDougal, J.S., et al. (1995). Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retrov 11, 533–539.Google Scholar
  4. Anderson, J.S., Javien, J., Nolta, J.A., and Bauer, G. (2009). Preintegration HIV-1 inhibition by a combination lentiviral vector containing a chimeric TRIM5 alpha protein, a CCR5 shRNA, and a TAR decoy. Mol Ther 17, 2103–2114.Google Scholar
  5. Armbruster, C., Stiegler, G.M., Vcelar, B.A., Jager, W., Michael, N.L., Vetter, N., and Katinger, H.W. (2002). A phase I trial with two human monoclonal antibodies (hMAb 2F5, 2G12) against HIV-1. Aids 16, 227–233.Google Scholar
  6. Baba, M., Miyake, H., Wang, X., Okamoto, M., and Takashima, K. (2007). Isolation and characterization of human immunodeficiency virus type 1 resistant to the small-molecule CCR5 antagonist TAK-652. Antimicrob Agents Chemother 51, 707–715.Google Scholar
  7. Baba, M., Nishimura, O., Kanzaki, N., Okamoto, M., Sawada, H., Iizawa, Y., Shiraishi, M., Aramaki, Y., Okonogi, K., Ogawa, Y., et al. (1999). A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci U S A 96, 5698–5703.Google Scholar
  8. Baba, T.W., Liska, V., Hofmann-Lehmann, R., Vlasak, J., Xu, W.D., Ayehunie, S., Cavacini, L.A., Posner, M.R., Katinger, H., Stiegler, G., et al. (2000). Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection. Nat Med 6, 200–206.Google Scholar
  9. Balazs, A.B., Chen, J., Hong, C.M., Rao, D.S., Yang, L., and Baltimore, D. (2012). Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature 481, 81–84.Google Scholar
  10. Barbas, C.F., 3rd, Bjorling, E., Chiodi, F., Dunlop, N., Cababa, D., Jones, T.M., Zebedee, S.L., Persson, M.A., Nara, P.L., Norrby, E., et al. (1992). Recombinant human Fab fragments neutralize human type 1 immunodeficiency virus in vitro. Proc Natl Acad Sci U S A 89, 9339–9343.Google Scholar
  11. Barre-Sinoussi, F., Chermann, J.C., Rey, F., Nugeyre, M.T., Chamaret, S., Gruest, J., Dauguet, C., Axler-Blin, C., Vezinet-Brun, F., Rouzioux, C., et al. (1983). Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Science 220, 868–871.Google Scholar
  12. Berro, R., Sanders, R.W., Lu, M., Klasse, P.J., and Moore, J.P. (2009). Two HIV-1 variants resistant to small molecule CCR5 inhibitors differ in how they use CCR5 for entry. PLoS Pathog 5, e1000548.Google Scholar
  13. Boden, D., Hurley, A., Zhang, L., Cao, Y., Guo, Y., Jones, E., Tsay, J., Ip, J., Farthing, C., Limoli, K., et al. (1999). HIV-1 drug resistance in newly infected individuals. Jama 282, 1135–1141.Google Scholar
  14. Brass, A.L., Dykxhoorn, D.M., Benita, Y., Yan, N., Engelman, A., Xavier, R.J., Lieberman, J., and Elledge, S.J. (2008). Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926.Google Scholar
  15. Buchacher, A., Predl, R., Strutzenberger, K., Steinfellner, W., Trkola, A., Purtscher, M., Gruber, G., Tauer, C., Steindl, F., Jungbauer, A., et al. (1994). Generation of human monoclonal antibodies against HIV-1 proteins; electrofusion and Epstein-Barr virus transformation for peripheral blood lymphocyte immortalization. AIDS Res Hum Retrov 10, 359–369.Google Scholar
  16. Buchbinder, S.P., Mehrotra, D.V., Duerr, A., Fitzgerald, D.W., Mogg, R., Li, D., Gilbert, P.B., Lama, J.R., Marmor, M., Del Rio, C., et al. (2008). Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372, 1881–1893.Google Scholar
  17. Burkly, L.C., Olson, D., Shapiro, R., Winkler, G., Rosa, J.J., Thomas, D.W., Williams, C., and Chisholm, P. (1992). Inhibition of HIV infection by a novel CD4 domain 2-specific monoclonal antibody. Dissecting the basis for its inhibitory effect on HIV-induced cell fusion. J Immunol 149, 1779–1787.Google Scholar
  18. Burton, D.R., Pyati, J., Koduri, R., Sharp, S.J., Thornton, G.B., Parren, P.W., Sawyer, L.S., Hendry, R.M., Dunlop, N., Nara, P.L., et al. (1994). Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027.Google Scholar
  19. Cahn, P., Villacian, J., Lazzarin, A., Katlama, C., Grinsztejn, B., Arasteh, K., Lopez, P., Clumeck, N., Gerstoft, J., Stavrianeas, N., et al. (2006). Ritonavir-boosted tipranavir demonstrates superior efficacy to ritonavir-boosted protease inhibitors in treatment-experienced HIV-infected patients: 24-week results of the RESIST-2 trial. Clin Infect Dis 43, 1347–1356.Google Scholar
  20. Calarese, D.A., Scanlan, C.N., Zwick, M.B., Deechongkit, S., Mimura, Y., Kunert, R., Zhu, P., Wormald, M.R., Stanfield, R.L., Roux, K.H., et al. (2003). Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 300, 2065–2071.Google Scholar
  21. Chen, C.H., Matthews, T.J., McDanal, C.B., Bolognesi, D.P., and Greenberg, M.L. (1995). A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J Virol 69, 3771–3777.Google Scholar
  22. Chen, L., Kwon, Y.D., Zhou, T., Wu, X., O’Dell, S., Cavacini, L., Hessell, A.J., Pancera, M., Tang, M., Xu, L., et al. (2009). Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science 326, 1123–1127.Google Scholar
  23. Chen, Z., Kwon, D., Jin, Z., Monard, S., Telfer, P., Jones, M.S., Lu, C.Y., Aguilar, R.F., Ho, D.D., and Marx, P.A. (1998). Natural infection of a homozygous delta24 CCR5 red-capped mangabey with an R2b-tropic simian immunodeficiency virus. J Exp Med 188, 2057–2065.Google Scholar
  24. Chen, Z., Zhou, P., Ho, D.D., Landau, N.R., and Marx, P.A. (1997). Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry. J Virol 71, 2705–2714.Google Scholar
  25. Clotet, B., Bellos, N., Molina, J.M., Cooper, D., Goffard, J.C., Lazzarin, A., Wohrmann, A., Katlama, C., Wilkin, T., Haubrich, R., et al. (2007). Efficacy and safety of darunavir-ritonavir at week 48 in treatment-experienced patients with HIV-1 infection in POWER 1 and 2: a pooled subgroup analysis of data from two randomised trials. Lancet 369, 1169–1178.Google Scholar
  26. Conibear, E., and Stevens, T.H. (2000). Vps52p, Vps53p, and Vps54p form a novel multisubunit complex required for protein sorting at the yeast late Golgi. Mol Biol Cell 11, 305–323.Google Scholar
  27. Conley, A.J., Kessler, J.A., 2nd, Boots, L.J., McKenna, P.M., Schleif, W.A., Emini, E.A., Mark, G.E., 3rd, Katinger, H., Cobb, E.K., Lunceford, S.M., et al. (1996). The consequence of passive administration of an anti-human immunodeficiency virus type 1 neutralizing monoclonal antibody before challenge of chimpanzees with a primary virus isolate. J Virol 70, 6751–6758.Google Scholar
  28. Cooper, D.A., Heera, J., Goodrich, J., Tawadrous, M., Saag, M., Dejesus, E., Clumeck, N., Walmsley, S., Ting, N., Coakley, E., et al. (2010). Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naive subjects with CCR5-tropic HIV-1 infection. J Infect Dis 201, 803–813.Google Scholar
  29. Crawford, K.W., Li, C., Keung, A., Su, Z., Hughes, M.D., Greaves, W., Kuritzkes, D., Gulick, R., and Flexner, C. (2010). Pharmacokinetic/pharmacodynamic modeling of the antiretroviral activity of the CCR5 antagonist Vicriviroc in treatment experienced HIV-infected subjects (ACTG protocol 5211). J Acquir Immune Defic Syndr 53, 598–605.Google Scholar
  30. De Clercq, E., Yamamoto, N., Pauwels, R., Balzarini, J., Witvrouw, M., De Vreese, K., Debyser, Z., Rosenwirth, B., Peichl, P., Datema, R., et al. (1994). Highly potent and selective inhibition of human immunodeficiency virus by the bicyclam derivative JM3100. Antimicrob Agents Ch 38, 668–674.Google Scholar
  31. De Vreese, K., Reymen, D., Griffin, P., Steinkasserer, A., Werner, G., Bridger, G.J., Este, J., James, W., Henson, G.W., Desmyter, J., et al. (1996). The bicyclams, a new class of potent human immunodeficiency virus inhibitors, block viral entry after binding. Antivir Res 29, 209–219.Google Scholar
  32. Del Nery, E., Miserey-Lenkei, S., Falguieres, T., Nizak, C., Johannes, L., Perez, F., and Goud, B. (2006). Rab6A and Rab6A’ GTPases play non-overlapping roles in membrane trafficking. Traffic 7, 394–407.Google Scholar
  33. Deng, H., Liu, R., Ellmeier, W., Choe, S., Unutmaz, D., Burkhart, M., Di Marzio, P., Marmon, S., Sutton, R.E., Hill, C.M., et al. (1996). Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661–666.Google Scholar
  34. DiPersio, J.F., Uy, G.L., Yasothan, U., and Kirkpatrick, P. (2009). Plerixafor. Nat Rev Drug Discov 8, 105–106.Google Scholar
  35. Donzella, G.A., Schols, D., Lin, S.W., Este, J.A., Nagashima, K.A., Maddon, P.J., Allaway, G.P., Sakmar, T.P., Henson, G., De Clercq, E., et al. (1998). AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat Med 4, 72–77.Google Scholar
  36. Dorr, P., Westby, M., Dobbs, S., Griffin, P., Irvine, B., Macartney, M., Mori, J., Rickett, G., Smith-Burchnell, C., Napier, C., et al. (2005). Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Ch 49, 4721–4732.Google Scholar
  37. Dragic, T., Trkola, A., Thompson, D.A., Cormier, E.G., Kajumo, F.A., Maxwell, E., Lin, S.W., Ying, W., Smith, S.O., Sakmar, T.P., et al. (2000). A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci U S A 97, 5639–5644.Google Scholar
  38. Dudley, D.M., Wentzel, J.L., Lalonde, M.S., Veazey, R.S., and Arts, E.J. (2009). Selection of a simian-human immunodeficiency virus strain resistant to a vaginal microbicide in macaques. J Virol 83, 5067–5076.Google Scholar
  39. Duenas-Decamp, M.J., Peters, P., Burton, D., and Clapham, P.R. (2008). Natural resistance of human immunodeficiency virus type 1 to the CD4bs antibody b12 conferred by a glycan and an arginine residue close to the CD4 binding loop. J Virol 82, 5807–5814.Google Scholar
  40. Eckert, D.M., and Kim, P.S. (2001). Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem 70, 777–810.Google Scholar
  41. Eron, J.J., Gulick, R.M., Bartlett, J.A., Merigan, T., Arduino, R., Kilby, J.M., Yangco, B., Diers, A., Drobnes, C., DeMasi, R., et al. (2004). Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 189, 1075–1083.Google Scholar
  42. Fatkenheuer, G., Nelson, M., Lazzarin, A., Konourina, I., Hoepelman, A.I., Lampiris, H., Hirschel, B., Tebas, P., Raffi, F., Trottier, B., et al. (2008). Subgroup analyses of maraviroc in previously treated R5 HIV-1 infection. N Engl J Med 359, 1442–1455.Google Scholar
  43. Frankel, S.S., Steinman, R.M., Michael, N.L., Kim, S.R., Bhardwaj, N., Pope, M., Louder, M.K., Ehrenberg, P.K., Parren, P.W., Burton, D.R., et al. (1998). Neutralizing monoclonal antibodies block human immunodeficiency virus type 1 infection of dendritic cells and transmission to T cells. J Virol 72, 9788–9794.Google Scholar
  44. Gathe, J., Diaz, R., Fatkenheuer, G., Zeinecker, J., Mak, C., Vilchez, R., Greaves, W., Kumar, S., Onyebuchi, C., and Dunkle, L. (2010). Phase 3 trials of vicriviroc in treatment-experienced subjects demonstrate safety but not significantly superior efficacy over potent background regimens alone. In XVII conference on Retroviruses and Opportunistic Infections (San Francisco, CA, USA).Google Scholar
  45. Gauduin, M.C., Allaway, G.P., Olson, W.C., Weir, R., Maddon, P.J., and Koup, R.A. (1998). CD4-immunoglobulin G2 protects Hu-PBL-SCID mice against challenge by primary human immunodeficiency virus type 1 isolates. J Virol 72, 3475–3478.Google Scholar
  46. Gray, E.S., Moore, P.L., Bibollet-Ruche, F., Li, H., Decker, J.M., Meyers, T., Shaw, G.M., and Morris, L. (2008). 4E10-resistant variants in a human immunodeficiency virus type 1 subtype C-infected individual with an anti-membrane-proximal external region-neutralizing antibody response. J Virol 82, 2367–2375.Google Scholar
  47. Greenhead, P., Hayes, P., Watts, P.S., Laing, K.G., Griffin, G.E., and Shattock, R.J. (2000). Parameters of human immunodeficiency virus infection of human cervical tissue and inhibition by vaginal virucides. J Virol 74, 5577–5586.Google Scholar
  48. Grinsztejn, B., Nguyen, B.Y., Katlama, C., Gatell, J.M., Lazzarin, A., Vittecoq, D., Gonzalez, C.J., Chen, J., Harvey, C.M., and Isaacs, R.D. (2007). Safety and efficacy of the HIV-1 integrase inhibitor raltegravir (MK-0518) in treatment-experienced patients with multidrug-resistant virus: a phase II randomised controlled trial. Lancet 369, 1261–1269.Google Scholar
  49. Gulick, R.M., Lalezari, J., Goodrich, J., Clumeck, N., DeJesus, E., Horban, A., Nadler, J., Clotet, B., Karlsson, A., Wohlfeiler, M., et al. (2008). Maraviroc for previously treated patients with R5 HIV-1 infection. N Engl J Med 359, 1429–1441.Google Scholar
  50. Guo, Q., Ho, H.T., Dicker, I., Fan, L., Zhou, N., Friborg, J., Wang, T., McAuliffe, B.V., Wang, H.G., Rose, R.E., et al. (2003). Biochemical and genetic characterizations of a novel human immunodeficiency virus type 1 inhibitor that blocks gp120-CD4 interactions. J Virol 77, 10528–10536.Google Scholar
  51. Hammer, S.M., Katzenstein, D.A., Hughes, M.D., Gundacker, H., Schooley, R.T., Haubrich, R.H., Henry, W.K., Lederman, M.M., Phair, J.P., Niu, M., et al. (1996). A trial comparing nucleoside monotherapy with combination therapy in HIV-infected adults with CD4 cell counts from 200 to 500 per cubic millimeter. AIDS Clinical Trials Group Study 175 Study Team. N Engl J Med 335, 1081–1090.Google Scholar
  52. Hanna, G.J., Lalezari, J., Hellinger, J.A., Wohl, D.A., Nettles, R., Persson, A., Krystal, M., Lin, P., Colonno, R., and Grasela, D.M. (2011). Antiviral activity, pharmacokinetics, and safety of BMS-488043, a novel oral small-molecule HIV-1 attachment inhibitor, in HIV-1-infected subjects. Antimicrob Agents Che 55, 722–728.Google Scholar
  53. Hardy, W.D., Gulick, R.M., Mayer, H., Fatkenheuer, G., Nelson, M., Heera, J., Rajicic, N., and Goodrich, J. (2010). Two-year safety and virologic efficacy of maraviroc in treatment-experienced patients with CCR5-tropic HIV-1 infection: 96-week combined analysis of MOTIVATE 1 and 2. J Acquir Immune Defic Syndr 55, 558–564.Google Scholar
  54. He, Y., Xiao, Y., Song, H., Liang, Q., Ju, D., Chen, X., Lu, H., Jing, W., Jiang, S., and Zhang, L. (2008). Design and evaluation of sifuvirtide, a novel HIV-1 fusion inhibitor. J Biol Chem 283, 11126–11134.Google Scholar
  55. Hendrix, C.W., Collier, A.C., Lederman, M.M., Schols, D., Pollard, R.B., Brown, S., Jackson, J.B., Coombs, R.W., Glesby, M.J., Flexner, C.W., et al. (2004). Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr 37, 1253–1262.Google Scholar
  56. Hessell, A.J., Rakasz, E.G., Poignard, P., Hangartner, L., Landucci, G., Forthal, D.N., Koff, W.C., Watkins, D.I., and Burton, D.R. (2009). Broadly Neutralizing Human Anti-HIV Antibody 2G12 Is Effective in Protection against Mucosal SHIV Challenge Even at Low Serum Neutralizing Titers. Plos Pathog 5(5):e 1000433.Google Scholar
  57. Hessell, A.J., Rakasz, E.G., Tehrani, D.M., Huber, M., Weisgrau, K.L., Landucci, G., Forthal, D.N., Koff, W.C., Poignard, P., Watkins, D.I., et al. (2010). Broadly neutralizing monoclonal antibodies 2F5 and 4E10 directed against the human immunodeficiency virus type 1 gp41 membrane-proximal external region protect against mucosal challenge by simian-human immunodeficiency virus SHIVBa-L. J Virol 84, 1302–1313.Google Scholar
  58. Hicks, C.B., Cahn, P., Cooper, D.A., Walmsley, S.L., Katlama, C., Clotet, B., Lazzarin, A., Johnson, M.A., Neubacher, D., Mayers, D., et al. (2006). Durable efficacy of tipranavir-ritonavir in combination with an optimised background regimen of antiretroviral drugs for treatment-experienced HIV-1-infected patients at 48 weeks in the Randomized Evaluation of Strategic Intervention in multi-drug reSistant patients with Tipranavir (RESIST) studies: an analysis of combined data from two randomised open-label trials. Lancet 368, 466–475.Google Scholar
  59. Ho, H.T., Fan, L., Nowicka-Sans, B., McAuliffe, B., Li, C.B., Yamanaka, G., Zhou, N., Fang, H., Dicker, I., Dalterio, R., et al. (2006). Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events. J Virol 80, 4017–4025.Google Scholar
  60. Holt, N., Wang, J., Kim, K., Friedman, G., Wang, X., Taupin, V., Crooks, G.M., Kohn, D.B., Gregory, P.D., Holmes, M.C., et al. (2010). Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28, 839–847.Google Scholar
  61. Huang, J., Ofek, G., Laub, L., Louder, M.K., Doria-Rose, N.A., Longo, N.S., Imamichi, H., Bailer, R.T., Chakrabarti, B., Sharma, S.K., et al. (2012). Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412.Google Scholar
  62. Huskens, D., Vermeire, K., Profy, A.T., and Schols, D. (2009). The candidate sulfonated microbicide, PRO 2000, has potential multiple mechanisms of action against HIV-1. Antiv Res 84, 38–47.Google Scholar
  63. Hutter, G., Nowak, D., Mossner, M., Ganepola, S., Mussig, A., Allers, K., Schneider, T., Hofmann, J., Kucherer, C., Blau, O., et al. (2009). Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360, 692–698.Google Scholar
  64. Imamura, S., Ichikawa, T., Nishikawa, Y., Kanzaki, N., Takashima, K., Niwa, S., Iizawa, Y., Baba, M., and Sugihara, Y. (2006). Discovery of a piperidine-4-carboxamide CCR5 antagonist (TAK-220) with highly potent Anti-HIV-1 activity. J Med Chem 49, 2784–2793.Google Scholar
  65. Jacobson, J.M., Israel, R.J., Lowy, I., Ostrow, N.A., Vassilatos, L.S., Barish, M., Tran, D.N., Sullivan, B.M., Ketas, T.J., O’Neill, T.J., et al. (2004). Treatment of advanced human immunodeficiency virus type 1 disease with the viral entry inhibitor PRO 542. Antimicrob Agents Ch 48, 423–429.Google Scholar
  66. Jacobson, J.M., Kuritzkes, D.R., Godofsky, E., DeJesus, E., Larson, J.A., Weinheimer, S.P., and Lewis, S.T. (2009). Safety, pharmacokinetics, and antiretroviral activity of multiple doses of ibalizumab (formerly TNX-355), an anti-CD4 monoclonal antibody, in human immunodeficiency virus type 1-infected adults. Antimicrob Agents Ch 53, 450–457.Google Scholar
  67. Jacobson, J.M., Lalezari, J.P., Thompson, M.A., Fichtenbaum, C.J., Saag, M.S., Zingman, B.S., D’Ambrosio, P., Stambler, N., Rotshteyn, Y., Marozsan, A.J., et al. (2010a). Phase 2a study of the CCR5 monoclonal antibody PRO 140 administered intravenously to HIV-infected adults. Antimicrob Agents Ch 54, 4137–4142.Google Scholar
  68. Jacobson, J.M., Thompson, M.A., Lalezari, J.P., Saag, M.S., Zingman, B.S., D’Ambrosio, P., Stambler, N., Rotshteyn, Y., Marozsan, A.J., Maddon, P.J., et al. (2010b). Anti-HIV-1 activity of weekly or biweekly treatment with subcutaneous PRO 140, a CCR5 monoclonal antibody. J Infect Dis 201, 1481–1487.Google Scholar
  69. Joos, B., Trkola, A., Kuster, H., Aceto, L., Fischer, M., Stiegler, G., Armbruster, C., Vcelar, B., Katinger, H., and Gunthard, H.F. (2006). Long-term multiple-dose pharmacokinetics of human monoclonal antibodies (MAbs) against human immunodeficiency virus type 1 envelope gp120 (MAb 2G12) and gp41 (MAbs 4E10 and 2F5). Antimicrob Agents Ch 50, 1773–1779.Google Scholar
  70. Kang, Y., Wu, Z., Lau, T.C., Lu, X., Liu, L., Cheung, A.K., Tan, Z., Ng, J., Liang, J., Wang, H., et al. (2012). CCR5 antagonist TD-0680 uses a novel mechanism for enhanced potency against HIV-1 entry, cell-mediated infection, and a resistant variant. J Biol Chem 287, 16499–16509.Google Scholar
  71. Katlama, C., Esposito, R., Gatell, J.M., Goffard, J.C., Grinsztejn, B., Pozniak, A., Rockstroh, J., Stoehr, A., Vetter, N., Yeni, P., et al. (2007). Efficacy and safety of TMC114/ritonavir in treatment-experienced HIV patients: 24-week results of POWER 1. Aids 21, 395–402.Google Scholar
  72. Kitajima, K., Minehata, K., Sakimura, K., Nakano, T., and Hara, T. (2011). In vitro generation of HSC-like cells from murine ESCs/iPSCs by enforced expression of LIM-homeobox transcription factor Lhx2. Blood 117, 3748–3758.Google Scholar
  73. Kondru, R., Zhang, J., Ji, C., Mirzadegan, T., Rotstein, D., Sankuratri, S., and Dioszegi, M. (2008). Molecular interactions of CCR5 with major classes of small-molecule anti-HIV CCR5 antagonists. Mol Pharmacol 73, 789–800.Google Scholar
  74. Kumar, P., Ban, H.S., Kim, S.S., Wu, H., Pearson, T., Greiner, D.L., Laouar, A., Yao, J., Haridas, V., Habiro, K., et al. (2008). T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134, 577–586.Google Scholar
  75. Lalezari, J., Gathe, J., Brinson, C., Thompson, M., Cohen, C., Dejesus, E., Galindez, J., Ernst, J.A., Martin, D.E., and Palleja, S.M. (2011). Safety, efficacy, and pharmacokinetics of TBR-652, a CCR5/CCR2 antagonist, in HIV-1-infected, treatment-experienced, CCR5 antagonist-naive subjects. J Acquir Immune Defic Syndr 57, 118–125.Google Scholar
  76. Lalezari, J., Thompson, M., Kumar, P., Piliero, P., Davey, R., Patterson, K., Shachoy-Clark, A., Adkison, K., Demarest, J., Lou, Y., et al. (2005). Antiviral activity and safety of 873140, a novel CCR5 antagonist, during short-term monotherapy in HIV-infected adults. Aids 19, 1443–1448.Google Scholar
  77. Lalezari, J.P., Henry, K., O’Hearn, M., Montaner, J.S., Piliero, P.J., Trottier, B., Walmsley, S., Cohen, C., Kuritzkes, D.R., Eron, J.J., Jr., et al. (2003). Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 348, 2175–2185.Google Scholar
  78. Lazzarin, A., Campbell, T., Clotet, B., Johnson, M., Katlama, C., Moll, A., Towner, W., Trottier, B., Peeters, M., Vingerhoets, J., et al. (2007). Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-2: 24-week results from a randomised, double-blind, placebo-controlled trial. Lancet 370, 39–48.Google Scholar
  79. Lazzarin, A., Clotet, B., Cooper, D., Reynes, J., Arasteh, K., Nelson, M., Katlama, C., Stellbrink, H.J., Delfraissy, J.F., Lange, J., et al. (2003). Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med 348, 2186–2195.Google Scholar
  80. Lederman, M.M., Veazey, R.S., Offord, R., Mosier, D.E., Dufour, J., Mefford, M., Piatak, M., Jr., Lifson, J.D., Salkowitz, J.R., Rodriguez, B., et al. (2004). Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306, 485–487.Google Scholar
  81. Lin, P.F., Blair, W., Wang, T., Spicer, T., Guo, Q., Zhou, N., Gong, Y.F., Wang, H.G., Rose, R., Yamanaka, G., et al. (2003). A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci U S A 100, 11013–11018.Google Scholar
  82. Liu, R., Paxton, W.A., Choe, S., Ceradini, D., Martin, S.R., Horuk, R., MacDonald, M.E., Stuhlmann, H., Koup, R.A., and Landau, N.R. (1996). Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377.Google Scholar
  83. Lu, X., Liu, L., Zhang, X., Lau, T.C., Tsui, S.K., Kang, Y., Zheng, P., Zheng, B., Liu, G., and Chen, Z. (2012). F18, a novel small-molecule nonnucleoside reverse transcriptase inhibitor, inhibits HIV-1 replication using distinct binding motifs as demonstrated by resistance selection and docking analysis. Antimicrob Agents Ch 56, 341–351.Google Scholar
  84. Luo, M., Liu, H., Zhuang, K., Liu, L., Su, B., Yang, R., Tien, P., Zhang, L., Gui, X., and Chen, Z. (2009). Prevalence of drug-resistant HIV-1 in rural areas of Hubei province in the People’s Republic of China. J Acquir Immune Defic Syndr 50, 1–8.Google Scholar
  85. Luo, X.M., Lei, M.Y.Y., Feidi, R.A., West, A.P., Balazs, A.B., Bjorkman, P.J., Yang, L.L., and Baltimore, D. (2010). Dimeric 2G12 as a Potent Protection against HIV-1. Plos Pathog 6(12):e1001225.Google Scholar
  86. Madani, N., Schon, A., Princiotto, A.M., Lalonde, J.M., Courter, J.R., Soeta, T., Ng, D., Wang, L., Brower, E.T., Xiang, S.H., et al. (2008). Small-molecule CD4 mimics interact with a highly conserved pocket on HIV-1 gp120. Structure 16, 1689–1701.Google Scholar
  87. Madruga, J.V., Cahn, P., Grinsztejn, B., Haubrich, R., Lalezari, J., Mills, A., Pialoux, G., Wilkin, T., Peeters, M., Vingerhoets, J., et al. (2007). Efficacy and safety of TMC125 (etravirine) in treatment-experienced HIV-1-infected patients in DUET-1: 24-week results from a randomised, double-blind, placebo-controlled trial. Lancet 370, 29–38.Google Scholar
  88. Maeda, K., Nakata, H., Koh, Y., Miyakawa, T., Ogata, H., Takaoka, Y., Shibayama, S., Sagawa, K., Fukushima, D., Moravek, J., et al. (2004). Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 78, 8654–8662.Google Scholar
  89. Marozsan, A.J., Kuhmann, S.E., Morgan, T., Herrera, C., Rivera-Troche, E., Xu, S., Baroudy, B.M., Strizki, J., and Moore, J.P. (2005). Generation and properties of a human immunodeficiency virus type 1 isolate resistant to the small molecule CCR5 inhibitor, SCH-417690 (SCH-D). Virology 338, 182–199.Google Scholar
  90. Martinez, M.A., Gutierrez, A., Armand-Ugon, M., Blanco, J., Parera, M., Gomez, J., Clotet, B., and Este, J.A. (2002). Suppression of chemokine receptor expression by RNA interference allows for inhibition of HIV-1 replication. Aids 16, 2385–2390.Google Scholar
  91. Mayer, K.H., Karim, S.A., Kelly, C., Maslankowski, L., Rees, H., Profy, A.T., Day, J., Welch, J., and Rosenberg, Z. (2003). Safety and tolerability of vaginal PRO 2000 gel in sexually active HIV-uninfected and abstinent HIV-infected women. Aids 17, 321–329.Google Scholar
  92. McCormack, S., Ramjee, G., Kamali, A., Rees, H., Crook, A.M., Gafos, M., Jentsch, U., Pool, R., Chisembele, M., Kapiga, S., et al. (2010). PRO2000 vaginal gel for prevention of HIV-1 infection (Microbicides Development Programme 301): a phase 3, randomised, double-blind, parallel-group trial. Lancet 376, 1329–1337.Google Scholar
  93. McLellan, J.S., Pancera, M., Carrico, C., Gorman, J., Julien, J.P., Khayat, R., Louder, R., Pejchal, R., Sastry, M., Dai, K., et al. (2011). Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480, 336–343.Google Scholar
  94. Mehandru, S., Vcelar, B., Wrin, T., Stiegler, G., Joos, B., Mohri, H., Boden, D., Galovich, J., Tenner-Racz, K., Racz, P., et al. (2007). Adjunctive passive immunotherapy in human immunodeficiency virus type 1-infected individuals treated with antiviral therapy during acute and early infection. J Virol 81, 11016–11031.Google Scholar
  95. Mello, C.C., and Conte, D., Jr. (2004). Revealing the world of RNA interference. Nature 431, 338–342.Google Scholar
  96. Mo, H., Stamatatos, L., Ip, J.E., Barbas, C.F., Parren, P.W., Burton, D.R., Moore, J.P., and Ho, D.D. (1997). Human immunodeficiency virus type 1 mutants that escape neutralization by human monoclonal antibody IgG1b12. off. J Virol 71, 6869–6874.Google Scholar
  97. Moore, J.P., Sattentau, Q.J., Klasse, P.J., and Burkly, L.C. (1992). A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J Virol 66, 4784–4793.Google Scholar
  98. Mosier, D.E., Picchio, G.R., Gulizia, R.J., Sabbe, R., Poignard, P., Picard, L., Offord, R.E., Thompson, D.A., and Wilken, J. (1999). Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. J Virol 73, 3544–3550.Google Scholar
  99. Murga, J.D., Franti, M., Pevear, D.C., Maddon, P.J., and Olson, W.C. (2006). Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1. Antimicrob Agents Ch 50, 3289–3296.Google Scholar
  100. Muster, T., Steindl, F., Purtscher, M., Trkola, A., Klima, A., Himmler, G., Ruker, F., and Katinger, H. (1993). A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J Virol 67, 6642–6647.Google Scholar
  101. Nagashima, K.A., Thompson, D.A., Rosenfield, S.I., Maddon, P.J., Dragic, T., and Olson, W.C. (2001). Human immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. J Infect Dis 183, 1121–1125.Google Scholar
  102. Nakamura, K.J., Gach, J.S., Jones, L., Semrau, K., Walter, J., Bibollet-Ruche, F., Decker, J.M., Heath, L., Decker, W.D., Sinkala, M., et al. (2010). 4E10-resistant HIV-1 isolated from four subjects with rare membrane-proximal external region polymorphisms. PLoS One 5, e9786.Google Scholar
  103. Nakata, H., Steinberg, S.M., Koh, Y., Maeda, K., Takaoka, Y., Tamamura, H., Fujii, N., and Mitsuya, H. (2008). Potent synergistic anti-human immunodeficiency virus (HIV) effects using combinations of the CCR5 inhibitor aplaviroc with other anti-HIV drugs. Antimicrob Agents Ch 52, 2111–2119.Google Scholar
  104. Nedellec, R., Coetzer, M., Lederman, M.M., Offord, R.E., Hartley, O., and Mosier, D.E. (2010). "Resistance" to PSC-RANTES revisited: two mutations in human immunodeficiency virus type 1 HIV-1 SF162 or simian-human immunodeficiency virus SHIV SF162-p3 do not confer resistance. J Virol 84, 5842–5845.Google Scholar
  105. Nelson, M., Arasteh, K., Clotet, B., Cooper, D.A., Henry, K., Katlama, C., Lalezari, J.P., Lazzarin, A., Montaner, J.S., O’Hearn, M., et al. (2005). Durable efficacy of enfuvirtide over 48 weeks in heavily treatment-experienced HIV-1-infected patients in the T-20 versus optimized background regimen only 1 and 2 clinical trials. J Acquir Immune Defic Syndr 40, 404–412.Google Scholar
  106. Nichols, W.G., Steel, H.M., Bonny, T., Adkison, K., Curtis, L., Millard, J., Kabeya, K., and Clumeck, N. (2008). Hepatotoxicity observed in clinical trials of aplaviroc (GW873140). Antimicrob Agents Ch 52, 858–865.Google Scholar
  107. Norris, D., Morales, J., Gathe, J., Godofsky, E., Garcia, F., Hardwicke, R., and Lewis, S. (2006). Phase 2 efficacy and safety of the novel entry inhibitor, TNX-355, in combination with optimized background regimen (OBR). In XVI International AIDS Conference (Toronto, ON, Canada).Google Scholar
  108. Olson, W.C., Rabut, G.E., Nagashima, K.A., Tran, D.N., Anselma, D.J., Monard, S.P., Segal, J.P., Thompson, D.A., Kajumo, F., Guo, Y., et al. (1999). Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. J Virol 73, 4145–4155.Google Scholar
  109. Palleja, S., Wang-Smith, L., Ogden, R., Martin, D., Driz, R., and Sapirstein, J. (2009). TBR-652, a chemokine receptor 5 (CCR5) antagonist, demonstrates good oral bioavailability and desirable pharmacokinetic (PK) and safety profiles in healthy volunteers. In XXXXVIIII Interscience Conference on Antimicrobial Agents and Chemotherapy (San Francisco, CA, USA).Google Scholar
  110. Pan, C., Lu, H., Qi, Z., and Jiang, S. (2009). Synergistic efficacy of combination of enfuvirtide and sifuvirtide, the first- and next-generation HIV-fusion inhibitors. Aids 23, 639–641.Google Scholar
  111. Pancera, M., McLellan, J.S., Wu, X., Zhu, J., Changela, A., Schmidt, S.D., Yang, Y., Zhou, T., Phogat, S., Mascola, J.R., et al. (2010). Crystal structure of PG16 and chimeric dissection with somatically related PG9: structure-function analysis of two quaternary-specific antibodies that effectively neutralize HIV-1. J Virol 84, 8098–8110.Google Scholar
  112. Parren, P.W., Marx, P.A., Hessell, A.J., Luckay, A., Harouse, J., Cheng-Mayer, C., Moore, J.P., and Burton, D.R. (2001). Antibody protects macaques against vaginal challenge with a pathogenic R5 simian/human immunodeficiency virus at serum levels giving complete neutralization in vitro. J Virol 75, 8340–8347.Google Scholar
  113. Pastore, C., Picchio, G.R., Galimi, F., Fish, R., Hartley, O., Offord, R.E., and Mosier, D.E. (2003). Two mechanisms for human immunodeficiency virus type 1 inhibition by N-terminal modifications of RANTES. Antimicrob Agents Ch 47, 509–517.Google Scholar
  114. Pejchal, R., Doores, K.J., Walker, L.M., Khayat, R., Huang, P.S., Wang, S.K., Stanfield, R.L., Julien, J.P., Ramos, A., Crispin, M., et al. (2011). A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334, 1097–1103.Google Scholar
  115. Perez, E.E., Wang, J., Miller, J.C., Jouvenot, Y., Kim, K.A., Liu, O., Wang, N., Lee, G., Bartsevich, V.V., Lee, Y.L., et al. (2008). Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26, 808–816.Google Scholar
  116. Pierson, T.C., and Doms, R.W. (2003). HIV-1 entry and its inhibition. Curr Top Microbiol Immunol 281, 1–27.Google Scholar
  117. Proudfoot, A.E., Power, C.A., Hoogewerf, A.J., Montjovent, M.O., Borlat, F., Offord, R.E., and Wells, T.N. (1996). Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. J Biol Chem 271, 2599–2603.Google Scholar
  118. Purtscher, M., Trkola, A., Grassauer, A., Schulz, P.M., Klima, A., Dopper, S., Gruber, G., Buchacher, A., Muster, T., and Katinger, H. (1996). Restricted antigenic variability of the epitope recognized by the neutralizing gp41 antibody 2F5. Aids 10, 587–593.Google Scholar
  119. Purtscher, M., Trkola, A., Gruber, G., Buchacher, A., Predl, R., Steindl, F., Tauer, C., Berger, R., Barrett, N., Jungbauer, A., et al. (1994). A broadly neutralizing human monoclonal antibody against gp41 of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 10, 1651–1658.Google Scholar
  120. Ray, N., Harrison, J.E., Blackburn, L.A., Martin, J.N., Deeks, S.G., and Doms, R.W. (2007). Clinical resistance to enfuvirtide does not affect susceptibility of human immunodeficiency virus type 1 to other classes of entry inhibitors. J Virol 81, 3240–3250.Google Scholar
  121. Reeves, J.D., Gallo, S.A., Ahmad, N., Miamidian, J.L., Harvey, P.E., Sharron, M., Pohlmann, S., Sfakianos, J.N., Derdeyn, C.A., Blumenthal, R., et al. (2002). Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A 99, 16249–16254.Google Scholar
  122. Reimann, K.A., Khunkhun, R., Lin, W., Gordon, W., and Fung, M. (2002). A humanized, nondepleting anti-CD4 antibody that blocks virus entry inhibits virus replication in rhesus monkeys chronically infected with simian immunodeficiency virus. AIDS Res Hum Retrov 18, 747–755.Google Scholar
  123. Rerks-Ngarm, S., Pitisuttithum, P., Nitayaphan, S., Kaewkungwal, J., Chiu, J., Paris, R., Premsri, N., Namwat, C., de Souza, M., Adams, E., et al. (2009). Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 361, 2209–2220.Google Scholar
  124. Roben, P., Moore, J.P., Thali, M., Sodroski, J., Barbas, C.F., 3rd, and Burton, D.R. (1994). Recognition properties of a panel of human recombinant Fab fragments to the CD4 binding site of gp120 that show differing abilities to neutralize human immunodeficiency virus type 1. J Virol 68, 4821–4828.Google Scholar
  125. Rusconi, S., Moonis, M., Merrill, D.P., Pallai, P.V., Neidhardt, E.A., Singh, S.K., Willis, K.J., Osburne, M.S., Profy, A.T., Jenson, J.C., et al. (1996). Naphthalene sulfonate polymers with CD4-blocking and anti-human immunodeficiency virus type 1 activities. Antimicrob Agents Ch 40, 234–236.Google Scholar
  126. Saphire, E.O., Parren, P.W., Pantophlet, R., Zwick, M.B., Morris, G.M., Rudd, P.M., Dwek, R.A., Stanfield, R.L., Burton, D.R., and Wilson, I.A. (2001). Crystal structure of a neutralizing human IGG against HIV-1: a template for vaccine design. Science 293, 1155–1159.Google Scholar
  127. Scheid, J.F., Mouquet, H., Ueberheide, B., Diskin, R., Klein, F., Oliveira, T.Y., Pietzsch, J., Fenyo, D., Abadir, A., Velinzon, K., et al. (2011). Sequence and structural convergence of broad and potent HIV antibodies that mimic CD4 binding. Science 333, 1633–1637.Google Scholar
  128. Scherer, E.M., Zwick, M.B., Teyton, L., and Burton, D.R. (2007). Difficulties in eliciting broadly neutralizing anti-HIV antibodies are not explained by cardiolipin autoreactivity. Aids 21, 2131–2139.Google Scholar
  129. Seto, M., Aikawa, K., Miyamoto, N., Aramaki, Y., Kanzaki, N., Takashima, K., Kuze, Y., Iizawa, Y., Baba, M., and Shiraishi, M. (2006). Highly potent and orally active CCR5 antagonists as anti-HIV-1 agents: synthesis and biological activities of 1-benzazocine derivatives containing a sulfoxide moiety. J Med Chem 49, 2037–2048.Google Scholar
  130. Shearer, W.T., Israel, R.J., Starr, S., Fletcher, C.V., Wara, D., Rathore, M., Church, J., DeVille, J., Fenton, T., Graham, B., et al. (2000). Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis 182, 1774–1779.Google Scholar
  131. Shimizu, S., Hong, P., Arumugam, B., Pokomo, L., Boyer, J., Koizumi, N., Kittipongdaja, P., Chen, A., Bristol, G., Galic, Z., et al. (2010). A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood 115, 1534–1544.Google Scholar
  132. Si, Z., Madani, N., Cox, J.M., Chruma, J.J., Klein, J.C., Schon, A., Phan, N., Wang, L., Biorn, A.C., Cocklin, S., et al. (2004). Small-molecule inhibitors of HIV-1 entry block receptor-induced conformational changes in the viral envelope glycoproteins. Proc Natl Acad Sci U S A, 101, 5036–5041.Google Scholar
  133. Sierra-Madero, J., Di Perri, G., Wood, R., Saag, M., Frank, I., Craig, C., Burnside, R., McCracken, J., Pontani, D., Goodrich, J., et al. (2010). Efficacy and safety of maraviroc versus efavirenz, both with zidovudine/lamivudine: 96-week results from the MERIT study. HIV Clin Trials 11, 125–132.Google Scholar
  134. Simmons, G., Clapham, P.R., Picard, L., Offord, R.E., Rosenkilde, M.M., Schwartz, T.W., Buser, R., Wells, T.N., and Proudfoot, A.E. (1997). Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276, 276–279.Google Scholar
  135. Smita, J., Soma, D., Beverly, B., Albert, P., JoAnn, K., Fang, G., Missy, C., Lydia, S.T., Anjali, P., Arun, R., et al. (2006). Phase I safety study of 0.5% PRO 2000 vaginal Gel among HIV un-infected women in Pune, India. AIDS Res Ther 3, 4.Google Scholar
  136. Song, R., Franco, D., Kao, C.Y., Yu, F., Huang, Y., and Ho, D.D. (2010). Epitope mapping of ibalizumab, a humanized anti-CD4 monoclonal antibody with anti-HIV-1 activity in infected patients. J Virol 84, 6935–6942.Google Scholar
  137. Stiegler, G., Kunert, R., Purtscher, M., Wolbank, S., Voglauer, R., Steindl, F., and Katinger, H. (2001). A potent cross-clade neutralizing human monoclonal antibody against a novel epitope on gp41 of human immunodeficiency virus type 1. AIDS Res Hum Retrov 17, 1757–1765.Google Scholar
  138. Strizki, J.M., Tremblay, C., Xu, S., Wojcik, L., Wagner, N., Gonsiorek, W., Hipkin, R.W., Chou, C.C., Pugliese-Sivo, C., Xiao, Y., et al. (2005). Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Ch 49, 4911–4919.Google Scholar
  139. Suleiman, J., Zingman, B.S., Diaz, R.S., Madruga, J.V., DeJesus, E., Slim, J., Mak, C., Lee, E., McCarthy, M.C., Dunkle, L.M., et al. (2010). Vicriviroc in combination therapy with an optimized regimen for treatment-experienced subjects: 48-week results of the VICTOR-E1 phase 2 trial. J Infect Dis 201, 590–599.Google Scholar
  140. Tabet, S.R., Callahan, M.M., Mauck, C.K., Gai, F., Coletti, A.S., Profy, A.T., Moench, T.R., Soto-Torres, L.E., Poindexter, I.A., Frezieres, R.G., et al. (2003). Safety and acceptability of penile application of 2 candidate topical microbicides: BufferGel and PRO 2000 Gel: 3 randomized trials in healthy low-risk men and HIV-positive men. J Acquir Immune Defic Syndr 33, 476–483.Google Scholar
  141. Takashima, K., Miyake, H., Kanzaki, N., Tagawa, Y., Wang, X., Sugihara, Y., Iizawa, Y., and Baba, M. (2005). Highly potent inhibition of human immunodeficiency virus type 1 replication by TAK-220, an orally bioavailable small-molecule CCR5 antagonist. Antimicrob Agents Ch 49, 3474–3482.Google Scholar
  142. Tebas, P., Levine, B., Binder, G., Hoxie, J., Collman, R., Gregory, P., Holmes, M., Ando, D., and June, C. (2011). Disruption of CCR5 in Zinc Finger Nuclease-treated CD4 T Cells: Phase I Trials. In XVIII Conference on Retroviruses and Opportunistic Infections (San Francisco, CA, USA).Google Scholar
  143. Teleshova, N., Chang, T., Profy, A., and Klotman, M.E. (2008). Inhibitory effect of PRO 2000, a candidate microbicide, on dendritic cell-mediated human immunodeficiency virus transfer. Antimicrob Agents Ch 52, 1751–1758.Google Scholar
  144. Tilton, J.C., Wilen, C.B., Didigu, C.A., Sinha, R., Harrison, J.E., Agrawal-Gamse, C., Henning, E.A., Bushman, F.D., Martin, J.N., Deeks, S.G., et al. (2010). A maraviroc-resistant HIV-1 with narrow cross-resistance to other CCR5 antagonists depends on both N-terminal and extracellular loop domains of drug-bound CCR5. J Virol 84, 10863–10876.Google Scholar
  145. Tremblay, C.L., Giguel, F., Guan, Y., Chou, T.C., Takashima, K., and Hirsch, M.S. (2005). TAK-220, a novel small-molecule CCR5 antagonist, has favorable anti-human immunodeficiency virus interactions with other antiretrovirals in vitro. Antimicrob Agents Ch 49, 3483–3485.Google Scholar
  146. Tremblay, C.L., Kollmann, C., Giguel, F., Chou, T.C., and Hirsch, M.S. (2000). Strong in vitro synergy between the fusion inhibitor T-20 and the CXCR4 blocker AMD-3100. J Acquir Immune Defic Syndr 25, 99–102.Google Scholar
  147. Trkola, A., Ketas, T.J., Nagashima, K.A., Zhao, L., Cilliers, T., Morris, L., Moore, J.P., Maddon, P.J., and Olson, W.C. (2001). Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J Virol 75, 579–588.Google Scholar
  148. Trkola, A., Kuster, H., Rusert, P., Joos, B., Fischer, M., Leemann, C., Manrique, A., Huber, M., Rehr, M., Oxenius, A., et al. (2005). Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat Med 11, 615–622.Google Scholar
  149. Trkola, A., Purtscher, M., Muster, T., Ballaun, C., Buchacher, A., Sullivan, N., Srinivasan, K., Sodroski, J., Moore, J.P., and Katinger, H. (1996). Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J Virol 70, 1100–1108.Google Scholar
  150. Trottier, B., Walmsley, S., Reynes, J., Piliero, P., O’Hearn, M., Nelson, M., Montaner, J., Lazzarin, A., Lalezari, J., Katlama, C., et al. (2005). Safety of enfuvirtide in combination with an optimized background of antiretrovirals in treatment-experienced HIV-1-infected adults over 48 weeks. J Acquir Immune Defic Syndr 40, 413–421.Google Scholar
  151. Tudor, D., and Bomsel, M. (2011). The broadly neutralizing HIV-1 IgG 2F5 elicits gp41-specific antibody-dependent cell cytotoxicity in a FcgammaRI-dependent manner. Aids 25, 751–759.Google Scholar
  152. UNAIDS. (2010). Global report: UNAIDS report on the global AIDS epidemic 2010 (Geneva, UNAIDS).Google Scholar
  153. Urnov, F.D., Miller, J.C., Lee, Y.L., Beausejour, C.M., Rock, J.M., Augustus, S., Jamieson, A.C., Porteus, M.H., Gregory, P.D., and Holmes, M.C. (2005). Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651.Google Scholar
  154. Vcelar, B., Stiegler, G., Wolf, H.M., Muntean, W., Leschnik, B., Mehandru, S., Markowitz, M., Armbruster, C., Kunert, R., Eibl, M.M., et al. (2007). Reassessment of autoreactivity of the broadly neutralizing HIV antibodies 4E10 and 2F5 and retrospective analysis of clinical safety data. Aids 21, 2161–2170.Google Scholar
  155. Veazey, R.S., Klasse, P.J., Schader, S.M., Hu, Q., Ketas, T.J., Lu, M., Marx, P.A., Dufour, J., Colonno, R.J., Shattock, R.J., et al. (2005). Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature 438, 99–102.Google Scholar
  156. Veazey, R.S., Shattock, R.J., Pope, M., Kirijan, J.C., Jones, J., Hu, Q., Ketas, T., Marx, P.A., Klasse, P.J., Burton, D.R., et al. (2003). Prevention of virus transmission to macaque monkeys by a vaginally applied monoclonal antibody to HIV-1 gp120. Nat Med 9, 343–346.Google Scholar
  157. Walker, L.M., Huber, M., Doores, K.J., Falkowska, E., Pejchal, R., Julien, J.P., Wang, S.K., Ramos, A., Chan-Hui, P.Y., Moyle, M., et al. (2011). Broad neutralization coverage of HIV by multiple highly potent antibodies. Nature 477, 466–470.Google Scholar
  158. Walker, L.M., Phogat, S.K., Chan-Hui, P.Y., Wagner, D., Phung, P., Goss, J.L., Wrin, T., Simek, M.D., Fling, S., Mitcham, J.L., et al. (2009). Broad and potent neutralizing antibodies from an African donor reveal a new HIV-1 vaccine target. Science 326, 285–289.Google Scholar
  159. Wang, T., Yin, Z., Zhang, Z., Bender, J.A., Yang, Z., Johnson, G., Zadjura, L.M., D’Arienzo, C.J., DiGiugno Parker, D., Gesenberg, C., et al. (2009). Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo [2,3-c]pyridin-3-yl) ethane-1,2-dione (BMS-488043), a drug candidate that demonstrates antiviral activity in HIV-1-infected subjects. J Med Chem 52, 7778–7787.Google Scholar
  160. Wang, T., Zhang, Z., Wallace, O.B., Deshpande, M., Fang, H., Yang, Z., Zadjura, L.M., Tweedie, D.L., Huang, S., Zhao, F., et al. (2003). Discovery of 4-benzoyl-1-[(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2-(R)-methylpiperazine (BMS-378806): a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J Med Chem 46, 4236–4239.Google Scholar
  161. Watson, C., Jenkinson, S., Kazmierski, W., and Kenakin, T. (2005). The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol Pharmacol 67, 1268–1282.Google Scholar
  162. Wei, X., Decker, J.M., Liu, H., Zhang, Z., Arani, R.B., Kilby, J.M., Saag, M.S., Wu, X., Shaw, G.M., and Kappes, J.C. (2002). Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Ch 46, 1896–1905.Google Scholar
  163. West, A.P., Jr., Galimidi, R.P., Foglesong, C.P., Gnanapragasam, P.N., Huey-Tubman, K.E., Klein, J.S., Suzuki, M.D., Tiangco, N.E., Vielmetter, J., and Bjorkman, P.J. (2009). Design and expression of a dimeric form of human immunodeficiency virus type 1 antibody 2G12 with increased neutralization potency. J Virol 83, 98–104.Google Scholar
  164. Westby, M., Smith-Burchnell, C., Mori, J., Lewis, M., Mosley, M., Stockdale, M., Dorr, P., Ciaramella, G., and Perros, M. (2007). Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol 81, 2359–2371.Google Scholar
  165. Wild, C., Greenwell, T., and Matthews, T. (1993). A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res Hum Retrov 9, 1051–1053.Google Scholar
  166. Wilen, C., Wang, J., Tilton, J., Miller, J., Sherrill-Mix, S., Bushman, F., Gregory, P., June, C., Holmes, M., and Doms, R. (2011). Creating an HIV-resistant immune system: using CXCR4 ZFN to edit the human genome. In XVIII Conference on Retroviruses and Opportunistic Infections (San Francisco, CA, USA).Google Scholar
  167. Wilkin, T.J., Su, Z., Krambrink, A., Long, J., Greaves, W., Gross, R., Hughes, M.D., Flexner, C., Skolnik, P.R., Coakley, E., et al. (2010). Three-year safety and efficacy of vicriviroc, a CCR5 antagonist, in HIV-1-infected treatment-experienced patients. J Acquir Immune Defic Syndr 54, 470–476.Google Scholar
  168. Witvrouw, M., Pannecouque, C., Switzer, W.M., Folks, T.M., De Clercq, E., and Heneine, W. (2004). Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis. Antivir Ther 9, 57–65.Google Scholar
  169. Wu, X., Yang, Z.Y., Li, Y., Hogerkorp, C.M., Schief, W.R., Seaman, M.S., Zhou, T., Schmidt, S.D., Wu, L., Xu, L., et al. (2010). Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861.Google Scholar
  170. Wu, X., Zhou, T., O’Dell, S., Wyatt, R.T., Kwong, P.D., and Mascola, J.R. (2009). Mechanism of human immunodeficiency virus type 1 resistance to monoclonal antibody B12 that effectively targets the site of CD4 attachment. J Virol 83, 10892–10907.Google Scholar
  171. Wu, X., Zhou, T., Zhu, J., Zhang, B., Georgiev, I., Wang, C., Chen, X., Longo, N.S., Louder, M., McKee, K., et al. (2011). Focused evolution of HIV-1 neutralizing antibodies revealed by structures and deep sequencing. Science 333, 1593–1602.Google Scholar
  172. Zhang, X.Q., Sorensen, M., Fung, M., and Schooley, R.T. (2006). Synergistic in vitro antiretroviral activity of a humanized monoclonal anti-CD4 antibody (TNX-355) and enfuvirtide (T-20). Antimicrob Agents Ch 50, 2231–2233.Google Scholar
  173. Zhou, N., Nowicka-Sans, B., Zhang, S., Fan, L., Fang, J., Fang, H., Gong, Y.F., Eggers, B., Langley, D.R., Wang, T., et al. (2011). In vivo patterns of resistance to the HIV attachment inhibitor BMS-488043. Antimicrob Agents Ch 55, 729–737.Google Scholar
  174. Zhou, T., Georgiev, I., Wu, X., Yang, Z.Y., Dai, K., Finzi, A., Kwon, Y.D., Scheid, J.F., Shi, W., Xu, L., et al. (2010). Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329, 811–817.Google Scholar
  175. Zwick, M.B., Labrijn, A.F., Wang, M., Spenlehauer, C., Saphire, E.O., Binley, J.M., Moore, J.P., Stiegler, G., Katinger, H., Burton, D.R., et al. (2001a). Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 75, 10892–10905.Google Scholar
  176. Zwick, M.B., Wang, M., Poignard, P., Stiegler, G., Katinger, H., Burton, D.R., and Parren, P.W. (2001b). Neutralization synergy of human immunodeficiency virus type 1 primary isolates by cocktails of broadly neutralizing antibodies. J Virol 75, 12198–12208.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.AIDS Institute and Department of Microbiology of Li Ka Shing Faculty of MedicineThe University of Hong KongPokfulamHong Kong SAR, China
  2. 2.Research Center for Infection and ImmunityThe University of Hong KongPokfulamHong Kong SAR, China

Personalised recommendations