Protein & Cell

, Volume 3, Issue 12, pp 934–942 | Cite as

Compound screening platform using human induced pluripotent stem cells to identify small molecules that promote chondrogenesis

  • Sheng-Lian Yang
  • Erica Harnish
  • Thomas Leeuw
  • Uwe Dietz
  • Erika Batchelder
  • Paul S. Wright
  • Jane Peppard
  • Paul August
  • Cecile Volle-Challier
  • Francoise Bono
  • Jean-Marc Herbert
  • Juan Carlos Izpisua Belmonte
Communication

Abstract

Articular cartilage, which is mainly composed of collagen II, enables smooth skeletal movement. Degeneration of collagen II can be caused by various events, such as injury, but degeneration especially increases over the course of normal aging. Unfortunately, the body does not fully repair itself from this type of degeneration, resulting in impaired movement. Microfracture, an articular cartilage repair surgical technique, has been commonly used in the clinic to induce the repair of tissue at damage sites. Mesenchymal stem cells (MSC) have also been used as cell therapy to repair degenerated cartilage. However, the therapeutic outcomes of all these techniques vary in different patients depending on their age, health, lesion size and the extent of damage to the cartilage. The repairing tissues either form fibrocartilage or go into a hypertrophic stage, both of which do not reproduce the equivalent functionality of endogenous hyaline cartilage. One of the reasons for this is inefficient chondrogenesis by endogenous and exogenous MSC. Drugs that promote chondrogenesis could be used to induce self-repair of damaged cartilage as a non-invasive approach alone, or combined with other techniques to greatly assist the therapeutic outcomes. The recent development of human induced pluripotent stem cell (iPSCs), which are able to self-renew and differentiate into multiple cell types, provides a potentially valuable cell resource for drug screening in a “more relevant” cell type. Here we report a screening platform using human iPSCs in a multi-well plate format to identify compounds that could promote chondrogenesis.

Keywords

hESC hiPSC chondrogenesis compound screening platform 

References

  1. Aasen, T., Raya, A., Barrero, M.J., Garreta, E., Consiglio, A., Gonzalez, F., Vassena, R., Bilic, J., Pekarik, V., Tiscornia, G., et al. (2008). Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotech 26, 1276–1284.CrossRefGoogle Scholar
  2. Allendorph, G.P., Read, J.D., Kawakami, Y., Kelber, J.A., Isaacs, M.J., and Choe, S. (2011). Designer TGFβ superfamily ligands with diversified functionality. PLoS ONE 6, e26402.CrossRefGoogle Scholar
  3. Bulman, S.E., Barron, V., Coleman, C.M., and Barry, F. (2012). Enhancing the mesenchymal stem cell therapeutic response: cell localization and support for cartilage repair. Tissue Eng Part B Rev. (In Press).Google Scholar
  4. Chanda, D., Kumar, S., and Ponnazhagan, S. (2010). Therapeutic potential of adult bone marrow-derived mesenchymal stem cells in diseases of the skeleton. Journal of Cell Biochem 111, 249–257.CrossRefGoogle Scholar
  5. Dowthwaite, G.P., Bishop, J.C., Redman, S.N., Khan, I.M., Rooney, P., Evans, D.J.R., Haughton, L., Bayram, Z., Boyer, S., Thomson, B., et al. (2004). The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117, 889–897.CrossRefGoogle Scholar
  6. Eiges, R., Schuldiner, M., Drukker, M., Yanuka, O., Itskovitz-Eldor, J., and Benvenisty, N. (2001). Establishment of human embryonic stem cell-transfected clones carrying a marker for undifferentiated cells. Curr Biol 11, 514–518.CrossRefGoogle Scholar
  7. Ellis, J., and Bhatia, M. (2011). iPSC technology: platform for drug discovery. Clin Pharmacol Ther 89, 639–641.CrossRefGoogle Scholar
  8. Falanga, V., Iwamoto, S., Chartier, M., Yufit, T., Butmarc, J., kouttab, N., Shrayer, D., and Carson, P. (2007). Autologous bone marrow-derived cultured mesenchymal stem cells delivered in a fibrin spray accelerate healing in murine and human cutaneous wounds. Tissue Eng 13, 1299–1312.CrossRefGoogle Scholar
  9. Francis-West, P.H., Abdelfattah, A., Chen, P., Allen, C., Parish, J., Ladher, R., Allen, S., MacPherson, S., Luyten, F.P., and Archer, C.W. (1999). Mechanisms of GDF-5 action during skeletal development. Development 126, 1305–1315.Google Scholar
  10. Goldring, M.B., and Goldring, S.R. (2007). Osteoarthritis. J Cell Physiol 213, 626–634.CrossRefGoogle Scholar
  11. Huang, A., Motlekar, N., Stein, A., Diamond, S., Shore, E., and Mauck, R. (2008). High-throughput screening for modulators of mesenchymal stem cell chondrogenesis. Ann Biomed Eng 36, 1909–1921.CrossRefGoogle Scholar
  12. Inoue, H., and Yamanaka, S. (2011). The use of induced pluripotent stem cells in drug development. Clin Pharmacol Ther 89, 655–661.CrossRefGoogle Scholar
  13. Jiang, T.X., Yi, J.R., Ying, S.Y., and Chuong, C.M. (1993). Activin enhances chondrogenesis of limb bud cells: stimulation of precartilaginous mesenchymal condensations and expression of NCAM. Dev Biol 155, 545–557.CrossRefGoogle Scholar
  14. Johnson, K., Zhu, S., Tremblay, M.S., Payette, J.N., Wang, J., Bouchez, L.C., Meeusen, S., Althage, A., Cho, C.Y., Wu, X., et al. (2012). A stem cell-based approach to cartilage repair. Science 336, 717–721.CrossRefGoogle Scholar
  15. Koay, E.J., Hoben, G.M.B., and Athanasiou, K.A. (2007). Tissue engineering with chondrogenically differentiated human embryonic stem cells. Stem Cells 25, 2183–2190.CrossRefGoogle Scholar
  16. Koelling, S., Kruegel, J., Irmer, M., Path, J.R., Sadowski, B., Miro, X., and Miosge, N. (2009). Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4, 324–335.CrossRefGoogle Scholar
  17. Kuettner, K.E. (1992). Biochemistry of articular cartilage in health and disease. Clin Biochem 25, 155–163.CrossRefGoogle Scholar
  18. Laird, P.W., Zijderveld, A., Linders, K., Rudnicki, M.A., Rudolf, J., and Berns, A. (1991). Simplified mammalian DNA isolation procedure. Nucleic Acids Res 19, 4293.CrossRefGoogle Scholar
  19. Liew, C.G., Draper, J.S., Walsh, J., Moore, H., and Andrews, P.W. (2007). Transient and stable transgene expression in human embryonic stem cells. Stem cells 25, 1521–1528.CrossRefGoogle Scholar
  20. Ludwig, T.E., Bergendahl, V., Levenstein, M.E., Yu, J., Probasco, M.D., and Thomson, J.A. (2006). Feeder-independent culture of human embryonic stem cells. Nat Meth 3, 637–646.CrossRefGoogle Scholar
  21. Lohmander, L.S., and Roos, E.M. (2007). Clinical update: treating osteoarthritis. The Lancet 370, 2082–2084.CrossRefGoogle Scholar
  22. MacArthur, C.C., Xue, h., Hoof, D.V., Lieu, P.T., Dudas, M., Fontes, A., Swistowski, A., Touboul, T., Seerke, R., Laurent, L.C., et al. (2012). Chromatin insulator elements block transgene silencing in engineered human embryonic stem cell lines at a defined chromosome 13 locus. Stem Cells Dev 21, 191–205.CrossRefGoogle Scholar
  23. Majumdar, M.K., Wang, E., and Morris, E.A. (2001). BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 189, 275–284.CrossRefGoogle Scholar
  24. Oldershaw, R.A., Baxter, M.A., Lowe, E.T., Bates, N., Grady, L.M., Soncin, F., Brison, D.R., Hardingham, T.E., and Kimber, S.J. (2010). Directed differentiation of human embryonic stem cells toward chondrocytes. Nat Biotech 28, 1187–1194.CrossRefGoogle Scholar
  25. Oreffo, R., Cooper, C., Mason, C., and Clements, M. (2005). Mesenchymal stem cells. Stem Cell Rev Rep 1, 169–178.CrossRefGoogle Scholar
  26. Pridie, K.H. (1955). The development and nature of osteroarthritis of the hip joint. Rheumatism 11, 2–7.Google Scholar
  27. Sastry, L., Johnson, T., J Hobson, M., B, S., and K, C. (2002). Titering lentiviral vectors: comparison of DNA, RNA and marker expression methods. Gene Ther 9, 1155–1162.CrossRefGoogle Scholar
  28. Siddappa, R., Licht, R., van Blitterswijk, C., and de Boer, J. (2007). Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res 25, 1029–1041.CrossRefGoogle Scholar
  29. Smith, G.D., Knutsen, G., and Richardson, J.B. (2005). A clinical review of cartilage repair techniques. J Bone Joint Surg Br 87, 445–449.CrossRefGoogle Scholar
  30. Steinwaerder, D.S., and Lieber, A. (2000). Insulation from viral transcriptional regulatory elements improves inducible transgene expression from adenovirus vectors in vitro and in vivo. Gene Ther 7, 556–567.CrossRefGoogle Scholar
  31. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.CrossRefGoogle Scholar
  32. Toh, W.S., Yang, Z., Liu, H., Heng, B.C., Lee, E.H., and Cao, T. (2007). Effects of culture conditions and bone morphogenetic protein 2 on extent of chondrogenesis from human embryonic stem cells. Stem Cells 25, 950–960.CrossRefGoogle Scholar
  33. William, R.J., and Harnly, H.W. (2007). Microfrature: indications, technique, and results. Instructional Course Lectures 56, 419–428.Google Scholar
  34. Woolf, A.D., and Pfleger, B. (2003). Burden of major musculoskeletal conditions. Bulletin WHO, 646–656.Google Scholar
  35. Yang, H.S., La, W.G., Bhang, S.H., Kim, H.J., Im, G.I., Lee, H., Park, J.H., and Kim, B.S. (2011). Hyaline cartilage regeneration by combined therapy of microfracture and long-term bone morphogenetic protein-2 delivery. Tissue Eng Part A 17, 1809–1818.CrossRefGoogle Scholar
  36. Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., Nie, J., Jonsdottir, G.A., Ruotti, V., Stewart, R., et al. (2007). Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920.CrossRefGoogle Scholar
  37. Zhou, G., Lefebvre, V., Zhang, Z., Eberspaecher, H., and de Crombrugghe, B. (1998). Three high mobility group-like sequences within a 48-base pair enhancer of the Col2a1 gene are required for cartilage-specific expression in vivo. J Biol Chem 273, 14989–14997.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sheng-Lian Yang
    • 1
  • Erica Harnish
    • 2
  • Thomas Leeuw
    • 3
  • Uwe Dietz
    • 3
  • Erika Batchelder
    • 1
  • Paul S. Wright
    • 2
  • Jane Peppard
    • 2
  • Paul August
    • 2
  • Cecile Volle-Challier
    • 4
  • Francoise Bono
    • 4
  • Jean-Marc Herbert
    • 4
  • Juan Carlos Izpisua Belmonte
    • 1
    • 5
  1. 1.Gene Expression LaboratoriesThe Salk Institute for Biological StudiesLa JollaUSA
  2. 2.Sanofi US, R&D, Early to Candidate UnitTucson Research CenterTucsonUSA
  3. 3.Sanofi Deutschland GmbH, R&DTSU Aging Quality of Life, Industriepark HoechstFrankfurt am MainGermany
  4. 4.Sanofi R&DEarly to Candidate UnitToulouseFrance
  5. 5.Center of Regeneration MedicineBarcelonaSpain

Personalised recommendations