Advertisement

Protein & Cell

, Volume 4, Issue 3, pp 231–242 | Cite as

Inactivation of Cdc42 in embryonic brain results in hydrocephalus with ependymal cell defects in mice

  • Xu PengEmail author
  • Qiong Lin
  • Yang Liu
  • Yixin Jin
  • Joseph E. Druso
  • Marc A. Antonyak
  • Jun-Lin Guan
  • Richard A. CerioneEmail author
Research Article

Abstract

The establishment of a polarized cellular morphology is essential for a variety of processes including neural tube morphogenesis and the development of the brain. Cdc42 is a Ras-related GTPase that plays an essential role in controlling cell polarity through the regulation of the actin and microtubule cytoskeleton architecture. Previous studies have shown that Cdc42 plays an indispensable role in telencephalon development in earlier embryo developmental stage (before E12.5). However, the functions of Cdc42 in other parts of brain in later embryo developmental stage or in adult brain remain unclear. Thus, in order to address the role of Cdc42 in the whole brain in later embryo developmental stage or in adulthood, we used Cre/loxP technology to generate two lines of tissuespecific Cdc42-knock-out mice. Inactivation of Cdc42 was achieved in neuroepithelial cells by crossing Cdc42/ flox mice with Nestin-Cre mice and resulted in hydrocephalus, causing death to occur within the postnatal stage. Histological analyses of the brains from these mice showed that ependymal cell differentiation was disrupted, resulting in aqueductal stenosis. Deletion of Cdc42 in the cerebral cortex also induced obvious defects in interkinetic nuclear migration and hypoplasia. To further explore the role of Cdc42 in adult mice brain, we examined the effects of knocking-out Cdc42 in radial glial cells by crossing Cdc42/flox mice with human glial fibrillary acidic protein (GFAP)-Cre mice. Inactivation of Cdc42 in radial glial cells resulted in hydrocephalus and ependymal cell denudation. Taken together, these results highlight the importance of Cdc42 for ependymal cell differentiation and maintaining, and suggest that these functions likely contribute to the essential roles played by Cdc42 in the development of the brain.

Keywords

Cdc42 small GTPase neuron glial cell polarity development 

References

  1. Aoki, K., Nakamura, T., and Matsuda, M. (2004). Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factorinduced neurite outgrowth in PC12 cells. J Biol Chem 279, 713–719.CrossRefGoogle Scholar
  2. Bokoch, G.M. (2003). Biology of the p21-activated kinases. Annu Rev Biochem 72, 743–781.CrossRefGoogle Scholar
  3. Cappello, S., Attardo, A., Wu, X., Iwasato, T., Itohara, S., Wilsch-Brauninger, M., Eilken, H.M., Rieger, M.A., Schroeder, T.T., Huttner, W.B., et al. (2006). The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface. Nat Neurosci 9, 1099–1107.CrossRefGoogle Scholar
  4. Cerione, R.A. (2004). Cdc42: new roads to travel. Trends Cell Biol 14, 127–132.CrossRefGoogle Scholar
  5. Chen, F., Ma, L., Parrini, M.C., Mao, X., Lopez, M., Wu, C., Marks, P.W., Davidson, L., Kwiatkowski, D.J., Kirchhausen, T., et al. (2000). Cdc42 is required for PIP(2)-induced actin polymerization and early development but not for cell viability. Curr Biol 10, 758–765.CrossRefGoogle Scholar
  6. Chen, L., Liao, G., Yang, L., Campbell, K., Nakafuku, M., Kuan, C.Y., and Zheng, Y. (2006). Cdc42 deficiency causes Sonic hedgehogindependent holoprosencephaly. Proc Natl Acad Sci U S A 103, 16520–16525.CrossRefGoogle Scholar
  7. Del Bigio, M.R. (1995). The ependyma: a protective barrier between brain and cerebrospinal fluid. Glia 14, 1–13.CrossRefGoogle Scholar
  8. Edwards, D.C., Sanders, L.C., Bokoch, G.M., and Gill, G.N. (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol 1, 253–259.CrossRefGoogle Scholar
  9. Erickson, J.W., and Cerione, R.A. (2001). Multiple roles for Cdc42 in cell regulation. Curr Opin Cell Biol 13, 153–157.CrossRefGoogle Scholar
  10. Etienne-Manneville, S. (2004). Cdc42—the centre of polarity. J Cell Sci 117, 1291–1300.CrossRefGoogle Scholar
  11. Etienne-Manneville, S., and Hall, A. (2001). Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489–498.CrossRefGoogle Scholar
  12. Etienne-Manneville, S., and Hall, A. (2002). Rho GTPases in cell biology. Nature 420, 629–635.CrossRefGoogle Scholar
  13. Etienne-Manneville, S., and Hall, A. (2003). Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr Opin Cell Biol 15, 67–72.CrossRefGoogle Scholar
  14. Fukata, M., Watanabe, T., Noritake, J., Nakagawa, M., Yamaga, M., Kuroda, S., Matsuura, Y., Iwamatsu, A., Perez, F., and Kaibuchi, K. (2002). Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873–885.CrossRefGoogle Scholar
  15. Garvalov, B.K., Flynn, K.C., Neukirchen, D., Meyn, L., Teusch, N., Wu, X., Brakebusch, C., Bamburg, J.R., and Bradke, F. (2007). Cdc42 regulates cofilin during the establishment of neuronal polarity. J Neurosci 27, 13117–13129.CrossRefGoogle Scholar
  16. Gotta, M., Abraham, M.C., and Ahringer, J. (2001). CDC-42 controls early cell polarity and spindle orientation in C. elegans. Curr Biol 11, 482–488.CrossRefGoogle Scholar
  17. Gotz, M., and Huttner, W.B. (2005). The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6, 777–788.CrossRefGoogle Scholar
  18. Govek, E.E., Newey, S.E., and Van Aelst, L. (2005). The role of the Rho GTPases in neuronal development. Genes Dev 19, 1–49.CrossRefGoogle Scholar
  19. Haigh, J.J., Morelli, P.I., Gerhardt, H., Haigh, K., Tsien, J., Damert, A., Miquerol, L., Muhlner, U., Klein, R., Ferrara, N., et al. (2003). Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev Biol 262, 225–241.CrossRefGoogle Scholar
  20. Hutterer, A., Betschinger, J., Petronczki, M., and Knoblich, J.A. (2004). Sequential roles of Cdc42, Par-6, aPKC, and Lgl in the establishment of epithelial polarity during Drosophila embryogenesis. Dev Cell 6, 845–854.CrossRefGoogle Scholar
  21. Ibanez-Tallon, I., Gorokhova, S., and Heintz, N. (2002). Loss of function of axonemal dynein Mdnah5 causes primary ciliary dyskinesia and hydrocephalus. Hum Mol Genet 11, 715–721.CrossRefGoogle Scholar
  22. Ibanez-Tallon, I., Pagenstecher, A., Fliegauf, M., Olbrich, H., Kispert, A., Ketelsen, U.P., North, A., Heintz, N., and Omran, H. (2004). Dysfunction of axonemal dynein heavy chain Mdnah5 inhibits ependymal flow and reveals a novel mechanism for hydrocephalus formation. Hum Mol Genet 13, 2133–2141.CrossRefGoogle Scholar
  23. Johnson, D.I., and Pringle, J.R. (1990). Molecular characterization of CDC42, a Saccharomyces cerevisiae gene involved in the development of cell polarity. J Cell Biol 111, 143–152.CrossRefGoogle Scholar
  24. Kesavan, G., Sand, F.W., Greiner, T.U., Johansson, J.K., Kobberup, S., Wu, X., Brakebusch, C., and Semb, H. (2009). Cdc42-mediated tubulogenesis controls cell specification. Cell 139, 791–801.CrossRefGoogle Scholar
  25. Kim, A.S., Kakalis, L.T., Abdul-Manan, N., Liu, G.A., and Rosen, M.K. (2000). Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404, 151–158.CrossRefGoogle Scholar
  26. Kim, M.D., Kolodziej, P., and Chiba, A. (2002). Growth cone pathfinding and filopodial dynamics are mediated separately by Cdc42 activation. J Neurosci 22, 1794–1806.Google Scholar
  27. Klezovitch, O., Fernandez, T.E., Tapscott, S.J., and Vasioukhin, V. (2004). Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev 18, 559–571.CrossRefGoogle Scholar
  28. Lakso, M., Pichel, J.G., Gorman, J.R., Sauer, B., Okamoto, Y., Lee, E., Alt, F.W., and Westphal, H. (1996). Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc Natl Acad Sci U S A 93, 5860–5865.CrossRefGoogle Scholar
  29. Linseman, D.A., and Loucks, F.A. (2008). Diverse roles of Rho family GTPases in neuronal development, survival, and death. Front Biosci 13, 657–676.CrossRefGoogle Scholar
  30. Lubarsky, B., and Krasnow, M.A. (2003). Tube morphogenesis: making and shaping biological tubes. Cell 112, 19–28.CrossRefGoogle Scholar
  31. Luo, L., Liao, Y.J., Jan, L.Y., and Jan, Y.N. (1994). Distinct morphogenetic functions of similar small GTPases: Drosophila Drac1 is involved in axonal outgrowth and myoblast fusion. Genes Dev 8, 1787–1802.CrossRefGoogle Scholar
  32. Machesky, L.M., and Insall, R.H. (1999). Signaling to actin dynamics. J Cell Biol 146, 267–272.CrossRefGoogle Scholar
  33. Nagy, T., Wei, H., Shen, T.L., Peng, X., Liang, C.C., Gan, B., and Guan, J.L. (2007). Mammary epithelial-specific deletion of the focal adhesion kinase gene leads to severe lobulo-alveolar hypoplasia and secretory immaturity of the murine mammary gland. The Journal of biological chemistry 282, 31766–31776.CrossRefGoogle Scholar
  34. Nechiporuk, T., Fernandez, T.E., and Vasioukhin, V. (2007). Failure of epithelial tube maintenance causes hydrocephalus and renal cysts in Dlg5-/- mice. Dev Cell 13, 338–350.CrossRefGoogle Scholar
  35. Nobes, C.D., and Hall, A. (1995). Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62.CrossRefGoogle Scholar
  36. Peng, X., Kraus, M.S., Wei, H., Shen, T.L., Pariaut, R., Alcaraz, A., Ji, G., Cheng, L., Yang, Q., Kotlikoff, M.I., et al. (2006). Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J Clin Invest 116, 217–227.CrossRefGoogle Scholar
  37. Peng, X., Wu, X., Druso, J.E., Wei, H., Park, A.Y., Kraus, M.S., Alcaraz, A., Chen, J., Chien, S., Cerione, R.A., et al. (2008). Cardiac developmental defects and eccentric right ventricular hypertrophy in cardiomyocyte focal adhesion kinase (FAK) conditional knockout mice. Proc Natl Acad Sci U S A 105, 6638–6643.CrossRefGoogle Scholar
  38. Prehoda, K.E., Scott, J.A., Mullins, R.D., and Lim, W.A. (2000). Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290, 801–806.CrossRefGoogle Scholar
  39. Sarner, S., Kozma, R., Ahmed, S., and Lim, L. (2000). Phosphatidylinositol 3-kinase, Cdc42, and Rac1 act downstream of Ras in integrin-dependent neurite outgrowth in N1E-115 neuroblastoma cells. Mol Cell Biol 20, 158–172.CrossRefGoogle Scholar
  40. Schwamborn, J.C., and Puschel, A.W. (2004). The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci 7, 923–929.CrossRefGoogle Scholar
  41. Shinjo, K., Koland, J.G., Hart, M.J., Narasimhan, V., Johnson, D.I., Evans, T., and Cerione, R.A. (1990). Molecular cloning of the gene for the human placental GTP-binding protein Gp (G25K): identification of this GTP-binding protein as the human homolog of the yeast cell-division-cycle protein CDC42. Proc Natl Acad Sci U S A 87, 9853–9857.CrossRefGoogle Scholar
  42. Spassky, N., Merkle, F.T., Flames, N., Tramontin, A.D., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2005). Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis. J Neurosci 25, 10–18.CrossRefGoogle Scholar
  43. Spear, P.C., and Erickson, C.A. (2012). Interkinetic nuclear migration: a mysterious process in search of a function. Dev Growth Differ 54, 306–316.CrossRefGoogle Scholar
  44. Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P.C., Bock, R., Klein, R., and Schutz, G. (1999). Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23, 99–103.CrossRefGoogle Scholar
  45. Wallingford, J.B. (2006). Planar cell polarity, ciliogenesis and neural tube defects. Hum Mol Genet 15 Spec No 2, R227–234.CrossRefGoogle Scholar
  46. Wodarz, A., and Nathke, I. (2007). Cell polarity in development and cancer. Nat Cell Biol 9, 1016–1024.CrossRefGoogle Scholar
  47. Wu, W.J., Erickson, J.W., Lin, R., and Cerione, R.A. (2000). The gamma-subunit of the coatomer complex binds Cdc42 to mediate transformation. Nature 405, 800–804.CrossRefGoogle Scholar
  48. Zhuo, L., Theis, M., Alvarez-Maya, I., Brenner, M., Willecke, K., and Messing, A. (2001). hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis 31, 85–94.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Xu Peng
    • 1
    Email author
  • Qiong Lin
    • 2
  • Yang Liu
    • 1
  • Yixin Jin
    • 1
  • Joseph E. Druso
    • 2
  • Marc A. Antonyak
    • 2
  • Jun-Lin Guan
    • 3
  • Richard A. Cerione
    • 2
    Email author
  1. 1.Department of Systems Biology and Translational Medicine, College of MedicineTexas A&M Health Science CenterTempleUSA
  2. 2.Department of Molecular MedicineCornell UniversityIthacaUSA
  3. 3.Department of Internal Medicine-Division of Molecular Medicine and Genetics and Department of Cell and Developmental BiologyUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations