Advertisement

Protein & Cell

, Volume 3, Issue 11, pp 855–863 | Cite as

Establishment of hepatic and neural differentiation platforms of Wilson’s disease specific induced pluripotent stem cells

  • Fei Yi
  • Jing Qu
  • Mo Li
  • Keiichiro Suzuki
  • Na Young Kim
  • Guang-Hui Liu
  • Juan Carlos Izpisua Belmonte
Research Article

Abstract

The combination of disease-specific human induced pluripotent stem cells (iPSC) and directed cell differentiation offers an ideal platform for modeling and studying many inherited human diseases. Wilson’s disease (WD) is a monogenic disorder of toxic copper accumulation caused by pathologic mutations of the ATP7B gene. WD affects multiple organs with primary manifestations in the liver and central nervous system (CNS). In order to better investigate the cellular pathogenesis of WD and to develop novel therapies against various WD syndromes, we sought to establish a comprehensive platform to differentiate WD patient iPSC into both hepatic and neural lineages. Here we report the generation of patient iPSC bearing a Caucasian population hotspot mutation of ATP7B. Combining with directed cell differentiation strategies, we successfully differentiated WD iPSC into hepatocyte-like cells, neural stem cells and neurons. Gene expression analysis and cDNA sequencing confirmed the expression of the mutant ATP7B gene in all differentiated cells. Hence we established a platform for studying both hepatic and neural abnormalities of WD, which may provide a new tool for tissue-specific disease modeling and drug screening in the future.

Keywords

induced pluripotent stem cell Wilson’s disease hepatocyte neural stem cell neuron 

Supplementary material

13238_2012_2064_MOESM1_ESM.pdf (67 kb)
Supplementary material, approximately 67.4 KB.

References

  1. Ala, A., Walker, A.P., Ashkan, K., Dooley, J.S., and Schilsky, M.L. (2007). Wilson’s disease. Lancet 369, 397–408.CrossRefGoogle Scholar
  2. Barthel, H., Hermann, W., Kluge, R., Hesse, S., Collingridge, D.R., Wagner, A., and Sabri, O. (2003). Concordant pre- and postsynaptic deficits of dopaminergic neurotransmission in neurologic Wilson disease. AJNR Am J Neuroradiol 24, 234–238.Google Scholar
  3. Chen, Y.F., Tseng, C.Y., Wang, H.W., Kuo, H.C., Yang, V.W., and Lee, O.K. (2012). Rapid generation of mature hepatocyte-like cells from human induced pluripotent stem cells by an efficient three-step protocol. Hepatology 55, 1193–1203.CrossRefGoogle Scholar
  4. Curtis, D., Durkie, M., Balac, P., Sheard, D., Goodeve, A., Peake, I., Quarrell, O., and Tanner, S. (1999). A study of Wilson disease mutations in Britain. Hum Mutat 14, 304–311.CrossRefGoogle Scholar
  5. Forbes, J.R., and Cox, D.W. (2000). Copper-dependent trafficking of Wilson disease mutant ATP7B proteins. Hum Mol Genet 9, 1927–1935.CrossRefGoogle Scholar
  6. Huster, D., Kuhne, A., Bhattacharjee, A., Raines, L., Jantsch, V., Noe, J., Schirrmeister, W., Sommerer, I., Sabri, O., Berr, F., et al. (2012). Diverse functional properties of Wilson disease ATP7B variants. Gastroenterology 142, 947–956.CrossRefGoogle Scholar
  7. Huster, D., Weizenegger, M., Kress, S., Mossner, J., and Caca, K. (2004). Rapid detection of mutations in Wilson disease gene ATP7B by DNA strip technology. Clin Chem Lab Med 42, 507–510.CrossRefGoogle Scholar
  8. Kenney, S.M., and Cox, D.W. (2007). Sequence variation database for the Wilson disease copper transporter, ATP7B. Hum Mutat 28, 1171–1177.CrossRefGoogle Scholar
  9. Lepori, M.B., Lovicu, M., Dessi, V., Zappu, A., Incollu, S., Zancan, L., Giacchino, R., Iorio, R., Vajro, P., Maggiore, G., et al. (2007). Twenty-four novel mutations in Wilson disease patients of predominantly Italian origin. Genet Test 11, 328–332.CrossRefGoogle Scholar
  10. Li, M., Suzuki, K., Qu, J., Saini, P., Dubova, I., Yi, F., Lee, J., Sancho-Martinez, I., Liu, G.H., and Izpisua Belmonte, J.C. (2011a). Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Res 21, 1740–1744.CrossRefGoogle Scholar
  11. Li, W., Sun, W., Zhang, Y., Wei, W., Ambasudhan, R., Xia, P., Talantova, M., Lin, T., Kim, J., Wang, X., et al. (2011b). Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci U S A 108, 8299–8304.CrossRefGoogle Scholar
  12. Liu, G.H., Barkho, B.Z., Ruiz, S., Diep, D., Qu, J., Yang, S.L., Panopoulos, A.D., Suzuki, K., Kurian, L., Walsh, C., et al. (2011a). Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature 472, 221–225.CrossRefGoogle Scholar
  13. Liu, G.H., Suzuki, K., Qu, J., Sancho-Martinez, I., Yi, F., Li, M., Kumar, S., Nivet, E., Kim, J., Soligalla, R.D., et al. (2011b). Targeted gene correction of laminopathy-associated LMNA mutations in patient-specific iPSCs. Cell Stem Cell 8, 688–694.CrossRefGoogle Scholar
  14. Lorincz, M.T. (2010). Neurologic Wilson’s disease. Ann N Y Acad Sci 1184, 173–187.CrossRefGoogle Scholar
  15. Murata, Y., Yamakawa, E., Iizuka, T., Kodama, H., Abe, T., Seki, Y., and Kodama, M. (1995). Failure of copper incorporation into ceruloplasmin in the Golgi apparatus of LEC rat hepatocytes. Biochem Biophys Res Commun 209, 349–355.CrossRefGoogle Scholar
  16. Saito, T., Okabe, M., Hosokawa, T., Kurasaki, M., Hata, A., Endo, F., Nagano, K., Matsuda, I., Urakami, K., and Saito, K. (1999). Immunohistochemical determination of the Wilson Copper-transporting P-type ATPase in the brain tissues of the rat. Neurosci Lett 266, 13–16.CrossRefGoogle Scholar
  17. Schilsky, M.L. (2009). Wilson disease: current status and the future. Biochimie 91, 1278–1281.CrossRefGoogle Scholar
  18. Song, Z., Cai, J., Liu, Y., Zhao, D., Yong, J., Duo, S., Song, X., Guo, Y., Zhao, Y., Qin, H., et al. (2009). Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res 19, 1233–1242.CrossRefGoogle Scholar
  19. Stapelbroek, J.M., Bollen, C.W., van Amstel, J.K., van Erpecum, K.J., van Hattum, J., van den Berg, L.H., Klomp, L.W., and Houwen, R.H. (2004). The H1069Q mutation in ATP7B is associated with late and neurologic presentation in Wilson disease: results of a meta-analysis. J Hepatol 41, 758–763.CrossRefGoogle Scholar
  20. Strecker, K., Schneider, J.P., Barthel, H., Hermann, W., Wegner, F., Wagner, A., Schwarz, J., Sabri, O., and Zimmer, C. (2006). Profound midbrain atrophy in patients with Wilson’s disease and neurological symptoms? J Neurol 253, 1024–1029.CrossRefGoogle Scholar
  21. Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872.CrossRefGoogle Scholar
  22. Terada, K., Aiba, N., Yang, X.L., Iida, M., Nakai, M., Miura, N., and Sugiyama, T. (1999). Biliary excretion of copper in LEC rat after introduction of copper transporting P-type ATPase, ATP7B. FEBS Lett 448, 53–56.CrossRefGoogle Scholar
  23. Walshe, J.M. (1962). Wilson’s disease. The presenting symptoms. Arch Dis Child 37, 253–256.CrossRefGoogle Scholar
  24. Wilson, S. (1912). Progressive lenticular degeneration: A familiar nervous disease associated with cirhosis of the liver. Brain 34, 295–509.CrossRefGoogle Scholar
  25. Yi, F., Liu, G.H., and Izpisua Belmonte, J.C. (2012). Human induced pluripotent stem cells derived hepatocytes: rising promise for disease modeling, drug development and cell therapy. Protein Cell 3, 246–250.CrossRefGoogle Scholar
  26. Zhang, S., Chen, S., Li, W., Guo, X., Zhao, P., Xu, J., Chen, Y., Pan, Q., Liu, X., Zychlinski, D., et al. (2011). Rescue of ATP7B function in hepatocyte-like cells from Wilson’s disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet 20, 3176–3187.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Fei Yi
    • 1
  • Jing Qu
    • 1
  • Mo Li
    • 1
  • Keiichiro Suzuki
    • 1
  • Na Young Kim
    • 1
  • Guang-Hui Liu
    • 1
    • 2
  • Juan Carlos Izpisua Belmonte
    • 1
    • 3
  1. 1.Gene Expression LaboratorySalk Institute for Biological StudiesLa JollaUSA
  2. 2.National Laboratory of Biomacromolecules, Institute of BiophysicsChinese Academy of SciencesBeijingChina
  3. 3.Center for Regenerative Medicine in BarcelonaBarcelonaSpain

Personalised recommendations