Protein & Cell

, Volume 3, Issue 5, pp 325–328 | Cite as

How carnivorous fungi use three-celled constricting rings to trap nematodes

  • Keke Liu
  • Jianqing Tian
  • Meichun Xiang
  • Xingzhong Liu


Predacious fungi form specialized hyphae structures to trap nematodes and other microscopic animals. Among the six kinds of trapping devices, the constricting ring is the only one that actively captures nematodes. When a nematode enters the aperture of the ring, which is formed by three cells, the cells rapidly triple their volume, close the aperture and hold the nematode in place. Hyphae then penetrate and consume the nematode. This paper reviews the data and hypotheses on conserving the evolution of constricting rings and their cytological and molecular mechanisms.


constricting ring predatory mechanism 


  1. Balan, J., and Lechevalier, H.A. (1972). The predaceous fungus Arthrobotrys dactyloides: induction of trap formation. Mycologia 64, 919–922.CrossRefGoogle Scholar
  2. Barron, G.L. (1969). Isolation and maintenance of endoparasitic nematophagous Hyphomycetes. Can J Bot 47, 1899–1902.CrossRefGoogle Scholar
  3. Barron, G.L. (1977). The nematode-destroying fungi. Canada: Canadian Biological Publications.Google Scholar
  4. Barron, G.L. (1981). Predators and parasites of microscopic animals. Biology of Conidial Fungi. Vol. 2. Cole GT and Kendrick B, eds. New York: Academic Press. 167–200.CrossRefGoogle Scholar
  5. Barron, G.L. (1992). Lignolytic and cellulolytic fungi as predators and parasites. The fungal community: its organization and role in ecosystem. Carroll GC, and Wicklow DT, eds. New York: Marcel Dekker. 311–326.Google Scholar
  6. Barron, G.L. (2003). Predatory fungi, wood decay, and the carbon cycle. Biodiversity 4, 3–9.CrossRefGoogle Scholar
  7. Chen, T.H., Hsu, C.S., Tsai, P.J., Ho, Y.F., Lin, N.S., and Lin, N.S. (2001). Heterotrimeric G-protein and signal transduction in the nematode-trapping fungus Arthrobotrys dactyloides. Planta 212, 858–863.CrossRefGoogle Scholar
  8. Corda, A.C.J. (1839). Pracht-Flora europäischer Schimmelbildungen. Leipzig, Germany.Google Scholar
  9. Couch, J.M. (1937). The formation and operation of the traps in the nematode catching fungus Dactylella bembicoides Drechsler. Elisha Mith Sci Soc 53, 301–309.Google Scholar
  10. Dackman, C., and Nordbring-Hertz, B. (1992). Conidial traps-a new survival structure of the nematode-trapping fungus Arthrobotrys oligospora. Mycol Res 96, 194–198.CrossRefGoogle Scholar
  11. Dixon, S.M. (1952). Predacious fungi from the rotten wood. Trans Br Mycol Soc 35, 144–148.CrossRefGoogle Scholar
  12. Drechsler, C. (1937). Some hyphomycetes that prey on free-living terricolous nematodes. Mycologia 29, 447–552.CrossRefGoogle Scholar
  13. Duddington, C.L. (1955). Fungi that attack microscopic animals. Bot Rev 21, 377–439.CrossRefGoogle Scholar
  14. Fresenius, G. (1852). Beitrage zur Mykologie 1–2, 1–80.Google Scholar
  15. Higgins, M.L., and Pramer, D. (1967). Fungal morphogenesis: ring formation and closure by Arthrobotrys dactyloides. Science 155, 345–346.CrossRefGoogle Scholar
  16. Jaffe, M.J., Leopold, A.C., and Staples, R.C. (2002). Thigmo responses in plants and fungi. Am J Bot 89, 375–382.CrossRefGoogle Scholar
  17. Liu, X.Z., and Xiang, M.C. (2009). The living strategy of nematophagous fungi. Micoscience 50, 20–25.CrossRefGoogle Scholar
  18. Muller, H.G. (1958). The constricting ring mechanism of two predacious Hyphomycetes. Trans Br Mycol Soc 41, 341–364.CrossRefGoogle Scholar
  19. Nordbring-Hertz, B. (1968). The influence of medium composition and addition of animal origin on the formation of capture organs in Arthrobotrys oligospora. Physiol Plant 21, 52–65.CrossRefGoogle Scholar
  20. Persmark, L., and Nordbring-Hertz, B. (1997). Conidial trap formation of nematode-trapping fungi in soil and soil extracts. FEMS Microbiol Ecol 22, 313–323.CrossRefGoogle Scholar
  21. Pramer, D. (1964). Nematode-trapping fungi. Science 144, 382–388.CrossRefGoogle Scholar
  22. Pramer, D., and Stoll, N.R. (1959). Nemin: a morphogenic substance causing trap formation by predaceous fungi. Science 129, 966–967.CrossRefGoogle Scholar
  23. Rubner, A. (1996). Revision of predacious hyphomycetes in the Dactylella-Monacrosporium complex. Stud Mycol 39, 1–134.Google Scholar
  24. Stirling, G.R. (1991). Biological control of plant parasitic nematodes: progress, problems and prospects. Wallingford, UK: CAB International. 56–59.Google Scholar
  25. Tzean, S.S., and Estey, R.H. (1979). Transmission electron microscopy of fungal nematode-trapping devices. Can J Pl Sci 59, 785–795.CrossRefGoogle Scholar
  26. Veenhuis, M. (1984). Occurrence, characterization and development of two different types of microbodies in the nematophaous fungus Arthrobotrys oligospora. FEMS Microbiol Lett 24, 31–38.CrossRefGoogle Scholar
  27. Veenhuis, M. (1985). Development and fate of electron dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Ant Van Leeuw 51, 399–407.CrossRefGoogle Scholar
  28. Veenhuis, M. (1989a). An improved method for light-and electron microscopical studies of nematode/fungal interactions. Ant Van Leeuw 55, 361–368.CrossRefGoogle Scholar
  29. Veenhuis, M. (1989b). Significance of electron dense microbodies in trap cells of the nematophagous fungus Arthrobotrys oligospora. Ant Van Leeuw 56, 251–261.CrossRefGoogle Scholar
  30. Wootton, L.M.O. and Pramer, D. (1966). Valine-induced morphogenesis in Arthrobotrys conoides. Bacteriol Proc 75, 225–232.Google Scholar
  31. Yang, Y., Yang, E.C., An, Z.Q., and Liu, X. (2007). Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc Natl Acad Sci U S A 104, 8379–8384.CrossRefGoogle Scholar
  32. Zorf, W. (1888). Zur kenntnis der infektions krandheiten nerderer thiere und pfanzen. Nova Acta Acad leop Carol 52, 314–337.Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Keke Liu
    • 1
  • Jianqing Tian
    • 1
  • Meichun Xiang
    • 1
  • Xingzhong Liu
    • 1
  1. 1.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina

Personalised recommendations