Protein & Cell

, Volume 3, Issue 4, pp 311–320

Bisindoylmaleimide I enhances osteogenic differentiation

Research Article

Abstract

The Wnt/β-catenin and bone morphogenetic proteins (BMPs) pathways play important roles in controlling osteogenesis. Using a cell-based kinase inhibitor screening assay, we identified the compound bisindoylmaleimide I (BIM) as a potent agonist of the cytosolic β-catenin accumulation in preosteoblast cells. Through suppressing glycogen synthase kinase 3β enzyme activities, BIM upregulated β-catenin responsive transcription and extended duration of BMP initiated signal. Functional analysis revealed that BIM promoted osteoblast differentiation and bone formation. The treatment of human mesenchymal stem cells with BIM promoted osteoblastogenesis. Our findings provide a new strategy to regulate mesenchymal stem cell differentiation by integration of the cellular signaling pathways.

Keywords

bisindoylmaleimide I Wnt/β-catenin glycogen synthase kinase 3β bone morphogenetic protein human mesenchymal stem cells (hMSCs) osteogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Behrens, J., von Kries, J.P., Kühl, M., Bruhn, L., Wedlich, D., Grosschedl, R., and Birchmeier, W. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382, 638–642.CrossRefPubMedGoogle Scholar
  2. Boyden, L.M., Mao, J., Belsky, J., Mitzner, L., Farhi, A., Mitnick, M.A., Wu, D., Insogna, K., and Lifton, R.P. (2002). High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346, 1513–1521.CrossRefPubMedGoogle Scholar
  3. Brunner, E., Peter, O., Schweizer, L., and Basler, K. (1997). pangolin encodes a Lef-1 homologue that acts downstream of Armadillo to transduce the Wingless signal in Drosophila. Nature 385, 829–833.CrossRefPubMedGoogle Scholar
  4. Cho, M., Park, S., Gwak, J., Kim, D.E., Yea, S.S., Shin, J.G., and Oh, S. (2008). Bisindoylmaleimide I suppresses adipocyte differentiation through stabilization of intracellular beta-catenin protein. Biochem Biophys Res Commun 367, 195–200.CrossRefPubMedGoogle Scholar
  5. Dempsey, E.C., Newton, A.C., Mochly-Rosen, D., Fields, A.P., Reyland, M.E., Insel, P.A., and Messing, R.O. (2000). Protein kinase C isozymes and the regulation of diverse cell responses. Am J Physiol Lung Cell Mol Physiol 279, L429–L438.PubMedGoogle Scholar
  6. Fang, D.X., Hawke, D., Zheng, Y.H., Xia, Y., Meisenhelder, J., Nika, H., Mills, G.B., Kobayashi, R., Hunter, T., and Lu, Z.M. (2007). Phosphorylation of beta-catenin by AKT promotes beta-catenin transcriptional activity. J Biol Chem 282, 11221–11229.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Fuentealba, L.C., Eivers, E., Ikeda, A., Hurtado, C., Kuroda, H., Pera, E.M., and De Robertis, E.M. (2007). Integrating patterning signals: Wnt/GSK3 regulates the duration of the BMP/Smad1 signal. Cell 131, 980–993.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Fujita, K., and Janz, S. (2007). Attenuation of WNT signaling by DKK-1 and -2 regulates BMP2-induced osteoblast differentiation and expression of OPG, RANKL and M-CSF. Mol Cancer 6, 71.PubMedCentralCrossRefPubMedGoogle Scholar
  9. Gaur, T., Lengner, C.J., Hovhannisyan, H., Bhat, R.A., Bodine, P.V., Komm, B.S., Javed, A., van Wijnen, A.J., Stein, J.L., Stein, G.S., et al. (2005). Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280, 33132–33140.CrossRefPubMedGoogle Scholar
  10. Glass, D.A. 2nd, Bialek, P., Ahn, J.D., Starbuck, M., Patel, M.S., Clevers, H., Taketo, M.M., Long, F., McMahon, A.P., Lang, R.A., et al. (2005). Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell 8, 751–764.CrossRefPubMedGoogle Scholar
  11. Gong, Y., Slee, R.B., Fukai, N., Rawadi, G., Roman-Roman, S., Reginato, A.M., Wang, H., Cundy, T., Glorieux, F.H., Lev, D., et al., and the Osteoporosis-Pseudoglioma Syndrome Collaborative Group. (2001). LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107, 513–523.CrossRefPubMedGoogle Scholar
  12. He, X.C., Yin, T., Grindley, J.C., Tian, Q., Sato, T., Tao, W.A., Dirisina, R., Porter-Westpfahl, K.S., Hembree, M., Johnson, T., et al. (2007). PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39, 189–198.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Hers, I., Tavaré, J.M., and Denton, R.M. (1999). The protein kinase C inhibitors bisindolylmaleimide I (GF 109203x) and IX (Ro 31-8220) are potent inhibitors of glycogen synthase kinase-3 activity. FEBS Lett 460, 433–436.CrossRefPubMedGoogle Scholar
  14. Hino, S., Tanji, C., Nakayama, K.I., and Kikuchi, A. (2005). Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase stabilizes beta-catenin through inhibition of its ubiquitination. Mol Cell Biol 25, 9063–9072.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Holmen, S.L., Zylstra, C.R., Mukherjee, A., Sigler, R.E., Faugere, M.C., Bouxsein, M.L., Deng, L., Clemens, T.L., and Williams, B.O. (2005). Essential role of beta-catenin in postnatal bone acquisition. J Biol Chem 280, 21162–21168.CrossRefPubMedGoogle Scholar
  16. Honda, T., Yamamoto, H., Ishii, A., and Inui, M. (2010). PDZRN3 negatively regulates BMP-2-induced osteoblast differentiation through inhibition of Wnt signaling. Mol Biol Cell 21, 3269–3277.PubMedCentralCrossRefPubMedGoogle Scholar
  17. Hsu, S.C., Galceran, J., and Grosschedl, R. (1998). Modulation of transcriptional regulation by LEF-1 in response to Wnt-1 signaling and association with beta-catenin. Mol Cell Biol 18, 4807–4818.PubMedCentralCrossRefPubMedGoogle Scholar
  18. Korchynskyi, O., and ten Dijke, P. (2002). Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277, 4883–4891.CrossRefPubMedGoogle Scholar
  19. Korinek, V., Barker, N., Morin, P.J., vanWichen, D., deWeger, R., Kinzler, K.W., Vogelstein, B., and Clevers, H. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC(−/−) colon carcinoma. Science 275, 1784–1787.CrossRefPubMedGoogle Scholar
  20. Kramer, I., Halleux, C., Keller, H., Pegurri, M., Gooi, J.H., Weber, P.B., Feng, J.Q., Bonewald, L.F., and Kneissel, M. (2010). Osteocyte Wnt/beta-catenin signaling is required for normal bone homeostasis. Mol Cell Biol 30, 3071–3085.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Lian, J.B., Stein, G.S., Javed, A., van Wijnen, A.J., Stein, J.L., Montecino, M., Hassan, M.Q., Gaur, T., Lengner, C.J., and Young, D.W. (2006). Networks and hubs for the transcriptional control of osteoblastogenesis. Rev Endocr Metab Disord 7, 1–16.CrossRefPubMedGoogle Scholar
  22. Little, R.D., Carulli, J.P., Del Mastro, R.G., Dupuis, J., Osborne, M., Folz, C., Manning, S.P., Swain, P.M., Zhao, S.C., Eustace, B., et al. (2002). A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70, 11–19.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Nie, J., Wang, H., He, F., and Huang, H. (2010). Nusap1 is essential for neural crest cell migration in zebrafish. Protein Cell 1, 259–266.CrossRefPubMedGoogle Scholar
  24. Pajak, B., Orzechowska, S., Gajkowska, B., and Orzechowski, A. (2008). Bisindolylmaleimides in anti-cancer therapy — more than PKC inhibitors. Adv Med Sci 53, 21–31.CrossRefPubMedGoogle Scholar
  25. Qiang, Y.W., Barlogie, B., Rudikoff, S., and Shaughnessy, J.D. Jr. (2008). Dkk1-induced inhibition of Wnt signaling in osteoblast differentiation is an underlying mechanism of bone loss in multiple myeloma. Bone 42, 669–680.CrossRefPubMedGoogle Scholar
  26. Rawadi, G., Vayssière, B., Dunn, F., Baron, R., and Roman-Roman, S. (2003). BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18, 1842–1853.CrossRefPubMedGoogle Scholar
  27. Rosen, C.J. (2003). The cellular and clinical parameters of anabolic therapy for osteoporosis. Crit Rev Eukaryot Gene Expr 13, 25–38.CrossRefPubMedGoogle Scholar
  28. Spencer, G.J., Utting, J.C., Etheridge, S.L., Arnett, T.R., and Genever, P.G. (2006). Wnt signalling in osteoblasts regulates expression of the receptor activator of NFkappaB ligand and inhibits osteoclastogenesis in vitro. J Cell Sci 119, 1283–1296.CrossRefPubMedGoogle Scholar
  29. Takada, I., Kouzmenko, A.P., and Kato, S. (2009). Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5, 442–447.CrossRefPubMedGoogle Scholar
  30. Tang, N., Song, W.X., Luo, J., Luo, X., Chen, J., Sharff, K.A., Bi, Y., He, B.C., Huang, J.Y., Zhu, G.H., et al. (2009). BMP-9-induced osteogenic differentiation of mesenchymal progenitors requires functional canonical Wnt/beta-catenin signalling. J Cell Mol Med 13, 2448–2464.CrossRefPubMedGoogle Scholar
  31. Taurin, S., Sandbo, N., Qin, Y.M., Browning, D., and Dulin, N.O. (2006). Phosphorylation of beta-catenin by cyclic AMP-dependent protein kinase. J Biol Chem 281, 9971–9976.CrossRefPubMedGoogle Scholar
  32. ten Dijke, P. (2006). Bone morphogenetic protein signal transduction in bone. Curr Med Res Opin 22, S7–S11.CrossRefPubMedGoogle Scholar
  33. van Dinther, M., Visser, N., de Gorter, D.J., Doorn, J., Goumans, M.J., de Boer, J., and ten Dijke, P. (2010). ALK2 R206H mutation linked to fibrodysplasia ossificans progressiva confers constitutive activity to the BMP type I receptor and sensitizes mesenchymal cells to BMP-induced osteoblast differentiation and bone formation. J Bone Miner Res 25, 1208–1215.PubMedGoogle Scholar
  34. Vukicevic, S., and Grgurevic, L. (2009). BMP-6 and mesenchymal stem cell differentiation. Cytokine Growth Factor Rev 20, 441–448.CrossRefPubMedGoogle Scholar
  35. Zhang, B., and Ma, J.X. (2010). Wnt pathway antagonists and angiogenesis. Protein Cell 1, 898–906.CrossRefPubMedGoogle Scholar
  36. Zhang, L., Gao, X., Wen, J., Ning, Y., and Chen, Y.G. (2006). Dapper 1 antagonizes Wnt signaling by promoting dishevelled degradation. J Biol Chem 281, 8607–8612.CrossRefPubMedGoogle Scholar
  37. Zhang, L., Zhou, F., van Laar, T., Zhang, J., van Dam, H., and Ten Dijke, P. (2011). Fas-associated factor 1 antagonizes Wnt signaling by promoting beta-catenin degradation. Mol Biol Cell 22, 1617–1624.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Zhao, A.Z., and Su, D. (2011). An “endocrine function of” bone to pick: starting with males. Protein Cell 2, 171–172.CrossRefPubMedGoogle Scholar
  39. Zhou, F., van Laar, T., Huang, H., and Zhang, L. (2011a). APP and APLP1 are degraded through autophagy in response to proteasome inhibition in neuronal cells. Protein Cell 2, 377–383.CrossRefPubMedGoogle Scholar
  40. Zhou, F., Zhang, L., Gong, K., Lu, G., Sheng, B., Wang, A., Zhao, N., Zhang, X., and Gong, Y. (2008a). LEF-1 activates the transcription of E2F1. Biochem Biophys Res Commun 365, 149–153.CrossRefPubMedGoogle Scholar
  41. Zhou, F., Zhang, L., van Laar, T., van Dam, H., and Ten Dijke, P. (2011b). GSK3 beta inactivation induces apoptosis of leukemia cells by repressing the function of c-Myb. Mol Biol Cell 22, 3533–3540.PubMedCentralCrossRefPubMedGoogle Scholar
  42. Zhou, F., Zhang, L., Wang, A., Song, B., Gong, K., Zhang, L., Hu, M., Zhang, X., Zhao, N., and Gong, Y. (2008b). The association of GSK3 beta with E2F1 facilitates nerve growth factor-induced neural cell differentiation. J Biol Chem 283, 14506–14515.CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Molecular Cell Biology and Centre for Biomedical GeneticsLeiden University Medical CenterLeidenThe Netherlands
  2. 2.Faculty of Basic Medical SciencesChongqing Medical University Medical CollegeChongqingChina

Personalised recommendations