Protein & Cell

, Volume 3, Issue 3, pp 173–181

Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis



Atherosclerosis is a chronic, inflammatory disorder characterized by the deposition of excess lipids in the arterial intima. The formation of macrophage-derived foam cells in a plaque is a hallmark of the development of atherosclerosis. Lipid homeostasis, especially cholesterol homeostasis, plays a crucial role during the formation of foam cells. Recently, lipid droplet-associated proteins, including PAT and CIDE family proteins, have been shown to control the development of atherosclerosis by regulating the formation, growth, stabilization and functions of lipid droplets in macrophage-derived foam cells. This review focuses on the potential mechanisms of formation of macrophage-derived foam cells in atherosclerosis with particular emphasis on the role of lipid homeostasis and lipid droplet-associated proteins. Understanding the process of foam cell formation will aid in the future discovery of novel therapeutic interventions for atherosclerosis.


macrophage foam cell atherosclerosis cholesterol lipid droplet-associated proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adorni, M.P., Zimetti, F., Billheimer, J.T., Wang, N., Rader, D.J., Phillips, M.C., and Rothblat, G.H. (2007). The roles of different pathways in the release of cholesterol from macrophages. J Lipid Res 48, 2453–2462.CrossRefGoogle Scholar
  2. An, G., Wang, H., Tang, R., Yago, T., McDaniel, J.M., McGee, S., Huo, Y., and Xia, L. (2008). P-selectin glycoprotein ligand-1 is highly expressed on Ly-6Chi monocytes and a major determinant for Ly-6Chi monocyte recruitment to sites of atherosclerosis in mice. Circulation 117, 3227–3237.CrossRefGoogle Scholar
  3. Ashraf, M.Z., and Gupta, N. (2011). Scavenger receptors: Implications in atherothrombotic disorders. Int J Biochem Cell Biol 43, 697–700.CrossRefGoogle Scholar
  4. Borradaile, N.M., Han, X., Harp, J.D., Gale, S.E., Ory, D.S., and Schaffer, J.E. (2006). Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res 47, 2726–2737.CrossRefGoogle Scholar
  5. Brown, M.S., and Goldstein, J.L. (1997). The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340.CrossRefGoogle Scholar
  6. Brown, M.S., and Goldstein, J.L. (1999). A proteolytic pathway that controls the cholesterol content of membranes, cells, and blood. Proc Natl Acad Sci U S A 96, 11041–11048.CrossRefGoogle Scholar
  7. Brunham, L.R., Singaraja, R.R., Duong, M., Timmins, J.M., Fievet, C., Bissada, N., Kang, M.H., Samra, A., Fruchart, J.C., McManus, B., et al. (2009). Tissue-specific roles of ABCA1 influence susceptibility to atherosclerosis. Arterioscler Thromb Vasc Biol 29, 548–554.CrossRefGoogle Scholar
  8. Buechler, C., Ritter, M., Duong, C.Q., Orso, E., Kapinsky, M., and Schmitz, G. (2001). Adipophilin is a sensitive marker for lipid loading in human blood monocytes. Biochim Biophys Acta 1532, 97–104.CrossRefGoogle Scholar
  9. Buers, I., Hofnagel, O., Ruebel, A., Severs, N.J., and Robenek, H. (2011). Lipid droplet associated proteins: an emerging role in atherogenesis. Histol Histopathol 26, 631–642.Google Scholar
  10. Buers, I., Robenek, H., Lorkowski, S., Nitschke, Y., Severs, N.J., and Hofnagel, O. (2009). TIP47, a lipid cargo protein involved in macrophage triglyceride metabolism. Arterioscler Thromb Vasc Biol 29, 767–773.CrossRefGoogle Scholar
  11. Bultel, S., Helin, L., Clavey, V., Chinetti-Gbaguidi, G., Rigamonti, E., Colin, M., Fruchart, J.C., Staels, B., and Lestavel, S. (2008). Liver X receptor activation induces the uptake of cholesteryl esters from high density lipoproteins in primary human macrophages. Arterioscler Thromb Vasc Biol 28, 2288–2295.CrossRefGoogle Scholar
  12. Burgess, B., Naus, K., Chan, J., Hirsch-Reinshagen, V., Tansley, G., Matzke, L., Chan, B., Wilkinson, A., Fan, J., Donkin, J., et al. (2008). Overexpression of human ABCG1 does not affect atherosclerosis in fat-fed ApoE-deficient mice. Arterioscler Thromb Vasc Biol 28, 1731–1737.CrossRefGoogle Scholar
  13. Chawla, A., Boisvert, W.A., Lee, C.H., Laffitte, B.A., Barak, Y., Joseph, S.B., Liao, D., Nagy, L., Edwards, P.A., Curtiss, L.K., et al. (2001). A PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol Cell 7, 161–171.CrossRefGoogle Scholar
  14. Chen, F.L., Yang, Z.H., Wang, X.C., Liu, Y., Yang, Y.H., Li, L.X., Liang, W.C., Zhou, W.B., and Hu, R.M. (2010). Adipophilin affects the expression of TNF-alpha, MCP-1, and IL-6 in THP-1 macrophages. Mol Cell Biochem 337, 193–199.CrossRefGoogle Scholar
  15. Chinetti, G., Lestavel, S., Bocher, V., Remaley, A.T., Neve, B., Torra, I.P., Teissier, E., Minnich, A., Jaye, M., Duverger, N., et al. (2001). PPAR-alpha and PPAR-gamma activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway. Nat Med 7, 53–58.CrossRefGoogle Scholar
  16. Chinetti-Gbaguidi, G., Rigamonti, E., Helin, L., Mutka, A.L., Lepore, M., Fruchart, J.C., Clavey, V., Ikonen, E., Lestavel, S., and Staels, B. (2005). Peroxisome proliferator-activated receptor alpha controls cellular cholesterol trafficking in macrophages. J Lipid Res 46, 2717–2725.CrossRefGoogle Scholar
  17. Combadière, C., Potteaux, S., Rodero, M., Simon, T., Pezard, A., Esposito, B., Merval, R., Proudfoot, A., Tedgui, A., and Mallat, Z. (2008). CCombined inhibition of CCL2, CX3CR1, and CCR5 abrogates Ly6C(hi) and Ly6C(lo) monocytosis and almost abolishes atherosclerosis in hypercholesterolemic mice. Circulation 1117, 1649–1657.CrossRefGoogle Scholar
  18. Duewell, P., Kono, H., Rayner, K.J., Sirois, C.M., Vladimer, G., Bauernfeind, F.G., Abela, G.S., Franchi, L., Nuñez, G., Schnurr, M., et al. (2010). NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361.CrossRefGoogle Scholar
  19. Faber, B.C., Cleutjens, K.B., Niessen, R.L., Aarts, P.L., Boon, W., Greenberg, A.S., Kitslaar, P.J., Tordoir, J.H., and Daemen, M.J. (2001). Identification of genes potentially involved in rupture of human atherosclerotic plaques. Circ Res 89, 547–554.CrossRefGoogle Scholar
  20. Fazio, S., Major, A.S., Swift, L.L., Gleaves, L.A., Accad, M., Linton, M.F., and Farese, R.V. Jr. (2001). Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest 107, 163–171.CrossRefGoogle Scholar
  21. Feingold, K.R., Kazemi, M.R., Magra, A.L., McDonald, C.M., Chui, L.G., Shigenaga, J.K., Patzek, S.M., Chan, Z.W., Londos, C., and Grunfeld, C. (2010). ADRP/ADFP and Mal1 expression are increased in macrophages treated with TLR agonists. Atherosclerosis 209, 81–88.CrossRefGoogle Scholar
  22. Ghosh, S., St Clair, R.W., and Rudel, L.L. (2003). Mobilization of cytoplasmic CE droplets by overexpression of human macrophage cholesteryl ester hydrolase. J Lipid Res 44, 1833–1840.CrossRefGoogle Scholar
  23. Ghosh, S., Zhao, B., Bie, J., and Song, J. (2010). Macrophage cholesteryl ester mobilization and atherosclerosis. Vascul Pharmacol 52, 1–10.CrossRefGoogle Scholar
  24. Glass, C.K., and Witztum, J.L. (2001). Atherosclerosis. the road ahead. Cell 104, 503–516.CrossRefGoogle Scholar
  25. Goldstein, J.L., DeBose-Boyd, R.A., and Brown, M.S. (2006). Protein sensors for membrane sterols. Cell 124, 35–46.CrossRefGoogle Scholar
  26. Gong, J., Sun, Z., and Li, P. (2009). CIDE proteins and metabolic disorders. Curr Opin Lipidol 20, 121–126.CrossRefGoogle Scholar
  27. Gordon, S., and Martinez, F.O. (2010). Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604.CrossRefGoogle Scholar
  28. Gu, J.Q., Wang, D.F., Yan, X.G., Zhong, W.L., Zhang, J., Fan, B., and Ikuyama, S. (2010). A Toll-like receptor 9-mediated pathway stimulates perilipin 3 (TIP47) expression and induces lipid accumulation in macrophages. Am J Physiol Endocrinol Metab 299, E593–E600.CrossRefGoogle Scholar
  29. Hofnagel, O., Buers, I., Schnoor, M., Lorkowski, S., and Robenek, H. (2007). Expression of perilipin isoforms in cell types involved in atherogenesis. Atherosclerosis 190, 14–15, author reply 16–17.CrossRefGoogle Scholar
  30. Im, S.S., Yousef, L., Blaschitz, C., Liu, J.Z., Edwards, R.A., Young, S.G., Raffatellu, M., and Osborne, T.F. (2011). Linking lipid metabolism to the innate immune response in macrophages through sterol regulatory element binding protein-1a. Cell Metab 13, 540–549.CrossRefGoogle Scholar
  31. Kadl, A., Meher, A.K., Sharma, P.R., Lee, M.Y., Doran, A.C., Johnstone, S.R., Elliott, M.R., Gruber, F., Han, J., Chen, W., et al. (2010). Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 107, 737–746.CrossRefGoogle Scholar
  32. Kunjathoor, V.V., Febbraio, M., Podrez, E.A., Moore, K.J., Andersson, L., Koehn, S., Rhee, J.S., Silverstein, R., Hoff, H.F., and Freeman, M.W. (2002). Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem 277, 49982–49988.CrossRefGoogle Scholar
  33. Langlois, D., Forcheron, F., Li, J.Y., del Carmine, P., Neggazi, S., and Beylot, M. (2011). Increased atherosclerosis in mice deficient in perilipin1. Lipids Health Dis 10, 169.CrossRefGoogle Scholar
  34. Larigauderie, G., Cuaz-Pérolin, C., Younes, A.B., Furman, C., Lasselin, C., Copin, C., Jaye, M., Fruchart, J.C., and Rouis, M. (2006). Adipophilin increases triglyceride storage in human macrophages by stimulation of biosynthesis and inhibition of beta-oxidation. FEBS J 273, 3498–3510.CrossRefGoogle Scholar
  35. Larigauderie, G., Furman, C., Jaye, M., Lasselin, C., Copin, C., Fruchart, J.C., Castro, G., and Rouis, M. (2004). Adipophilin enhances lipid accumulation and prevents lipid efflux from THP-1 macrophages: potential role in atherogenesis. Arterioscler Thromb Vasc Biol 24, 504–510.CrossRefGoogle Scholar
  36. Lee, C.H., Chawla, A., Urbiztondo, N., Liao, D., Boisvert, W.A., Evans, R.M., and Curtiss, L.K. (2003). Transcriptional repression of atherogenic inflammation: modulation by PPARdelta. Science 302, 453–457.CrossRefGoogle Scholar
  37. Lee, K.J., Kim, H.A., Kim, P.H., Lee, H.S., Ma, K.R., Park, J.H., Kim, D.J., and Hahn, J.H. (2004). Ox-LDL suppresses PMA-induced MMP-9 expression and activity through CD36-mediated activation of PPAR-g. Exp Mol Med 36, 534–544.CrossRefGoogle Scholar
  38. Li, A.C., Binder, C.J., Gutierrez, A., Brown, K.K., Plotkin, C.R., Pattison, J.W., Valledor, A.F., Davis, R.A., Willson, T.M., Witztum, J.L., et al. (2004). Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma. J Clin Invest 114, 1564–1576.CrossRefGoogle Scholar
  39. Li, H., Song, Y., Li, F., Zhang, L., Gu, Y., Zhang, L., Jiang, L., Dong, W., Ye, J., and Li, Q. (2010). Identification of lipid droplet-associated proteins in the formation of macrophage-derived foam cells using microarrays. Int J Mol Med 26, 231–239.Google Scholar
  40. Li, J.Z., and Li, P. (2007). Cide proteins and the development of obesity. Novartis Found Symp 286, 155–159; discussion 159–163, 196–203.CrossRefGoogle Scholar
  41. Li, J.Z., Ye, J., Xue, B., Qi, J., Zhang, J., Zhou, Z., Li, Q., Wen, Z., and Li, P. (2007). Cideb regulates diet-induced obesity, liver steatosis, and insulin sensitivity by controlling lipogenesis and fatty acid oxidation. Diabetes 56, 2523–2532.CrossRefGoogle Scholar
  42. Listenberger, L.L., Ostermeyer-Fay, A.G., Goldberg, E.B., Brown, W.J., and Brown, D.A. (2007). Adipocyte differentiation-related protein reduces the lipid droplet association of adipose triglyceride lipase and slows triacylglycerol turnover. J Lipid Res 48, 2751–2761.CrossRefGoogle Scholar
  43. Makowski, L., Boord, J.B., Maeda, K., Babaev, V.R., Uysal, K.T., Morgan, M.A., Parker, R.A., Suttles, J., Fazio, S., Hotamisligil, G.S., et al. (2001). Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7, 699–705.CrossRefGoogle Scholar
  44. Manning-Tobin, J.J., Moore, K.J., Seimon, T.A., Bell, S.A., Sharuk, M., Alvarez-Leite, J.I., de Winther, M.P., Tabas, I., and Freeman, M.W. (2009). Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 29, 19–26.CrossRefGoogle Scholar
  45. Martinez, F.O., Gordon, S., Locati, M., and Mantovani, A. (2006). Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177, 7303–7311.CrossRefGoogle Scholar
  46. Moon, Y.A., Shah, N.A., Mohapatra, S., Warrington, J.A., and Horton, J.D. (2001). Identification of a mammalian long chain fatty acyl elongase regulated by sterol regulatory element-binding proteins. J Biol Chem 276, 45358–45366.CrossRefGoogle Scholar
  47. Moore, K.J., Kunjathoor, V.V., Koehn, S.L., Manning, J.J., Tseng, A.A., Silver, J.M., McKee, M., and Freeman, M.W. (2005). Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 115, 2192–2201.CrossRefGoogle Scholar
  48. Nishino, N., Tamori, Y., Tateya, S., Kawaguchi, T., Shibakusa, T., Mizunoya, W., Inoue, K., Kitazawa, R., Kitazawa, S., Matsuki, Y., et al. (2008). FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118, 2808–2821.Google Scholar
  49. Ouimet, M., Franklin, V., Mak, E., Liao, X., Tabas, I., and Marcel, Y.L. (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab 13, 655–667.CrossRefGoogle Scholar
  50. Paul, A., Chan, L., and Bickel, P.E. (2008a). The PAT family of lipid droplet proteins in heart and vascular cells. Curr Hypertens Rep 10, 461–466.CrossRefGoogle Scholar
  51. Paul, A., Chang, B.H., Li, L., Yechoor, V.K., and Chan, L. (2008b). Deficiency of adipose differentiation-related protein impairs foam cell formation and protects against atherosclerosis. Circ Res 102, 1492–1501.CrossRefGoogle Scholar
  52. Pello, O.M., Silvestre, C., De Pizzol, M., and Andrés, V. (2011). A glimpse on the phenomenon of macrophage polarization during atherosclerosis. Immunobiology 216, 1172–1176.CrossRefGoogle Scholar
  53. Perrey, S., Legendre, C., Matsuura, A., Guffroy, C., Binet, J., Ohbayashi, S., Tanaka, T., Ortuno, J.C., Matsukura, T., Laugel, T., et al. (2001). Preferential pharmacological inhibition of macrophage ACAT increases plaque formation in mouse and rabbit models of atherogenesis. Atherosclerosis 155, 359–370.CrossRefGoogle Scholar
  54. Podrez, E.A., Febbraio, M., Sheibani, N., Schmitt, D., Silverstein, R.L., Hajjar, D.P., Cohen, P.A., Frazier, W.A., Hoff, H.F., and Hazen, S.L. (2000). Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 105, 1095–1108.CrossRefGoogle Scholar
  55. Posokhova, E.N., Khoshchenko, O.M., Chasovskikh, M.I., Pivovarova, E.N., and Dushkin, M.I. (2008). Lipid synthesis in macrophages during inflammation in vivo: effect of agonists of peroxisome proliferator activated receptors alpha and gamma and of retinoid X receptors. Biochemistry (Mosc) 73, 296–304.CrossRefGoogle Scholar
  56. Puri, V., Konda, S., Ranjit, S., Aouadi, M., Chawla, A., Chouinard, M., Chakladar, A., and Czech, M.P. (2007). Fat-specific protein 27, a novel lipid droplet protein that enhances triglyceride storage. J Biol Chem 282, 34213–34218.CrossRefGoogle Scholar
  57. Puri, V., Ranjit, S., Konda, S., Nicoloro, S.M., Straubhaar, J., Chawla, A., Chouinard, M., Lin, C., Burkart, A., Corvera, S., et al. (2008). Cidea is associated with lipid droplets and insulin sensitivity in humans. Proc Natl Acad Sci U S A 105, 7833–7838.CrossRefGoogle Scholar
  58. Rader, D.J., and Puré, E. (2005). Lipoproteins, macrophage function, and atherosclerosis: beyond the foam cell? Cell Metab 1, 223–230.CrossRefGoogle Scholar
  59. Rios, F.J., Gidlund, M., and Jancar, S. (2011). Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages. Cell Physiol Biochem 27, 363–372.CrossRefGoogle Scholar
  60. Robenek, H., Lorkowski, S., Schnoor, M., and Troyer, D. (2005a). Spatial integration of TIP47 and adipophilin in macrophage lipid bodies. J Biol Chem 280, 5789–5794.CrossRefGoogle Scholar
  61. Robenek, H., Robenek, M.J., and Troyer, D. (2005b). PAT family proteins pervade lipid droplet cores. J Lipid Res 46, 1331–1338.CrossRefGoogle Scholar
  62. Siegel-Axel, D., Daub, K., Seizer, P., Lindemann, S., and Gawaz, M. (2008). Platelet lipoprotein interplay: trigger of foam cell formation and driver of atherosclerosis. Cardiovasc Res 78, 8–17.CrossRefGoogle Scholar
  63. Takahashi, K., Takeya, M., and Sakashita, N. (2002). Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc 35, 179–203.CrossRefGoogle Scholar
  64. Taketa, K., Matsumura, T., Yano, M., Ishii, N., Senokuchi, T., Motoshima, H., Murata, Y., Kim-Mitsuyama, S., Kawada, T., Itabe, H., et al. (2008). Oxidized low density lipoprotein activates peroxisome proliferator-activated receptor-alpha (PPARalpha) and PPARgamma through MAPK-dependent COX-2 expression in macrophages. J Biol Chem 283, 9852–9862.CrossRefGoogle Scholar
  65. Tansey, J.T., Sztalryd, C., Gruia-Gray, J., Roush, D.L., Zee, J.V., Gavrilova, O., Reitman, M.L., Deng, C.X., Li, C., Kimmel, A.R., et al. (2001). Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis, enhanced leptin production, and resistance to diet-induced obesity. Proc Natl Acad Sci U S A 98, 6494–6499.CrossRefGoogle Scholar
  66. Tobias, P., and Curtiss, L.K. (2005). Thematic review series: The immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. J Lipid Res 46, 404–411.Google Scholar
  67. Toh, S.Y., Gong, J., Du, G., Li, J.Z., Yang, S., Ye, J., Yao, H., Zhang, Y., Xue, B., Li, Q., et al. (2008). Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS One 3, e2890.CrossRefGoogle Scholar
  68. Tordjman, K., Bernal-Mizrachi, C., Zemany, L., Weng, S., Feng, C., Zhang, F., Leone, T.C., Coleman, T., Kelly, D.P., and Semenkovich, C.F. (2001). PPARalpha deficiency reduces insulin resistance and atherosclerosis in apoE-null mice. J Clin Invest 107, 1025–1034.CrossRefGoogle Scholar
  69. Trigatti, B., Rayburn, H., Viñals, M., Braun, A., Miettinen, H., Penman, M., Hertz, M., Schrenzel, M., Amigo, L., Rigotti, A., et al. (1999). Influence of the high density lipoprotein receptor SR-BI on reproductive and cardiovascular pathophysiology. Proc Natl Acad Sci U S A 96, 9322–9327.CrossRefGoogle Scholar
  70. Ye, J., Li, J.Z., Liu, Y., Li, X., Yang, T., Ma, X., Li, Q., Yao, Z., and Li, P. (2009). Cideb, an ER- and lipid droplet-associated protein, mediates VLDL lipidation and maturation by interacting with apolipoprotein B. Cell Metab 9, 177–190.CrossRefGoogle Scholar
  71. Yvan-Charvet, L., Ranalletta, M., Wang, N., Han, S., Terasaka, N., Li, R., Welch, C., and Tall, A.R. (2007). Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice. J Clin Invest 117, 3900–3908.Google Scholar
  72. Zhao, B., Song, J., Chow, W.N., St Clair, R.W., Rudel, L.L., and Ghosh, S. (2007). Macrophage-specific transgenic expression of cholesteryl ester hydrolase significantly reduces atherosclerosis and lesion necrosis in Ldlr mice. J Clin Invest 117, 2983–2992.CrossRefGoogle Scholar
  73. Zhao, Y., Pennings, M., Vrins, C.L., Calpe-Berdiel, L., Hoekstra, M., Kruijt, J.K., Ottenhoff, R., Hildebrand, R.B., van der Sluis, R., Jessup, W., et al. (2011). Hypocholesterolemia, foam cell accumulation, but no atherosclerosis in mice lacking ABC-transporter A1 and scavenger receptor BI. Atherosclerosis 218, 314–322.CrossRefGoogle Scholar
  74. Zhou, X., He, W., Huang, Z., Gotto, A.M. Jr, Hajjar, D.P., and Han, J. (2008). Genetic deletion of low density lipoprotein receptor impairs sterol-induced mouse macrophage ABCA1 expression. A new SREBP1-dependent mechanism. J Biol Chem 283, 2129–2138.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Pathology, Xijing HospitalFourth Military Medical UniversityXi’anChina
  2. 2.Tsinghua-Peking Center for Life Sciences, School of Life SciencesTsinghua UniversityBeijingChina

Personalised recommendations