Protein & Cell

, Volume 3, Issue 2, pp 84–88 | Cite as

Emerging technology of in situ cell free expression protein microarrays

  • Amita Nand
  • Anju Gautam
  • Javier Batista Pérez
  • Alejandro Merino
  • Jinsong Zhu


Recently, in situ protein microarrays have been developed for large scale analysis and high throughput studies of proteins. In situ protein microarrays produce proteins directly on the solid surface from pre-arrayed DNA or RNA. The advances in in situ protein microarrays are exemplified by the ease of cDNA cloning and cell free protein expression. These technologies can evaluate, validate and monitor protein in a cost effective manner and address the issue of a high quality protein supply to use in the array. Here we review the importance of recently employed methods: PISA (protein in situ array), DAPA (DNA array to protein array), NAPPA (nucleic acid programmable protein array) and TUSTER microarrays and the role of these methods in proteomics.


  1. Anderson, K.S., Sibani, S., Wallstrom, G., Qiu, J., Mendoza, E.A., Raphael, J., Hainsworth, E., Montor, W.R., Wong, J., Park, J.G., et al. (2011). Protein microarray signature of autoantibody biomarkers for the early detection of breast cancer. J Proteome Res 10, 85–96.PubMedCentralCrossRefPubMedGoogle Scholar
  2. Bundy, B.C., and Swartz, J.R. (2011). Efficient disulfide bond formation in virus-like particles. J Biotechnol 154, 230–239.CrossRefPubMedGoogle Scholar
  3. Carlson, E.D., Gan, R., Hodgman, C.E., and Jewett, M.C. (2011). Cell-free protein synthesis: Applications come of age. Biotechnol Adv 2011 Oct 8. [Epub ahead of print].Google Scholar
  4. Chatterjee, D.K., Sitaraman, K., Baptista, C., Hartley, J., Hill, T.M., and Munroe, D.J. (2008). Protein microarray on-demand: a novel protein microarray system. PLoS One 3, e3265.PubMedCentralCrossRefPubMedGoogle Scholar
  5. Chatterjee, M., Mohapatra, S., Ionan, A., Bawa, G., Ali-Fehmi, R., Wang, X., Nowak, J., Ye, B., Nahhas, F.A., Lu, K., et al. (2006). Diagnostic markers of ovarian cancer by high-throughput antigen cloning and detection on arrays. Cancer Res 66, 1181–1190.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Ekins, R.P. (1989). Multi-analyte immunoassay. J Pharm Biomed Anal 7, 155–168.CrossRefPubMedGoogle Scholar
  7. Endoh, T., Kanai, T., Sato, Y.T., Liu, D.V., Yoshikawa, K., Atomi, H., and Imanaka, T. (2006). Cell-free protein synthesis at high temperatures using the lysate of a hyperthermophile. J Biotechnol 126, 186–195.CrossRefPubMedGoogle Scholar
  8. Feilner, T., Hultschig, C., Lee, J., Meyer, S., Immink, R.G., Koenig, A., Possling, A., Seitz, H., Beveridge, A., Scheel, D., et al. (2005). High throughput identification of potential Arabidopsis mitogenactivated protein kinases substrates. Mol Cell Proteomics 4, 1558–1568.CrossRefPubMedGoogle Scholar
  9. Gygi, S.P., Rochon, Y., Franza, B.R., and Aebersold, R. (1999). Correlation between protein and mRNA abundance in yeast. Mol Cell Biol 19, 1720–1730.PubMedCentralCrossRefPubMedGoogle Scholar
  10. He, M., Stoevesandt, O., Palmer, E.A., Khan, F., Ericsson, O., and Taussig, M.J. (2008a). Printing protein arrays from DNA arrays. Nat Methods 5, 175–177.CrossRefPubMedGoogle Scholar
  11. He, M., Stoevesandt, O., and Taussig, M.J. (2008b). In situ synthesis of protein arrays. Curr Opin Biotechnol 19, 4–9.CrossRefPubMedGoogle Scholar
  12. He, M., and Taussig, M.J. (2001). Single step generation of protein arrays from DNA by cell-free expression and in situ immobilisation (PISA method). Nucleic Acids Res 29, E73–E3.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Hickel, W., Kamp, D., and Knoll, W. (1989). Surface-plasmon microscopy. Nature 339, 186.CrossRefGoogle Scholar
  14. Hu, S., Vissink, A., Arellano, M., Roozendaal, C., Zhou, H., Kallenberg, C.G., and Wong, D.T. (2011). Identification of autoantibody biomarkers for primary Sjögren’s syndrome using protein microarrays. Proteomics 11, 1499–1507.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Järås, K., and Anderson, K. (2011). Autoantibodies in cancer: prognostic biomarkers and immune activation. Expert Rev Proteomics 8, 577–589.CrossRefPubMedGoogle Scholar
  16. Katzen, F., Chang, G., and Kudlicki, W. (2005). The past, present and future of cell-free protein synthesis. Trends Biotechnol 23, 150–156.CrossRefPubMedGoogle Scholar
  17. Kawahashi, Y., Doi, N., Takashima, H., Tsuda, C., Oishi, Y., Oyama, R., Yonezawa, M., Miyamoto-Sato, E., and Yanagawa, H. (2003). In vitro protein microarrays for detecting protein-protein interactions: application of a new method for fluorescence labeling of proteins. Proteomics 3, 1236–1243.CrossRefPubMedGoogle Scholar
  18. Kim, H.C., Kim, T.W., and Kim, D.M. (2011). Prolonged production of proteins in a cell-free protein synthesis system using polymeric carbohydrates as an energy source. Process Biochem 46, 1366–1369.CrossRefGoogle Scholar
  19. Kralicek, A.V., Radjainia, M., Mohamad Ali, N.A., Carraher, C., Newcomb, R.D., and Mitra, A.K. (2011). A PCR-directed cell-free approach to optimize protein expression using diverse fusion tags. Protein Expr Purif 80, 117–124.CrossRefPubMedGoogle Scholar
  20. Langlais, C., Guilleaume, B., Wermke, N., Scheuermann, T., Ebert, L., LaBaer, J., and Korn, B. (2007). A systematic approach for testing expression of human full-length proteins in cell-free expression systems. BMC Biotechnol 7, 64.PubMedCentralCrossRefPubMedGoogle Scholar
  21. Lausted, C., Hu, Z., and Hood, L. (2008). Quantitative serum proteomics from surface plasmon resonance imaging. Mol Cell Proteomics 7, 2464–2474.CrossRefPubMedGoogle Scholar
  22. Lueking, A., Cahill, D.J., and Müllner, S. (2005). Protein biochips: A new and versatile platform technology for molecular medicine. Drug Discov Today 10, 789–794.CrossRefPubMedGoogle Scholar
  23. Ma, H., He, J., Liu, X., Gan, J., Jin, G., and Zhou, J. (2010). Surface initiated polymerization from substrates of low initiator density and its applications in biosensors. ACS Appl Mater Interfaces 2, 3223–3230.CrossRefPubMedGoogle Scholar
  24. Morley, M., Molony, C.M., Weber, T.M., Devlin, J.L., Ewens, K.G., Spielman, R.S., and Cheung, V.G. (2004). Genetic analysis of genome-wide variation in human gene expression. Nature 430, 743–747.PubMedCentralCrossRefPubMedGoogle Scholar
  25. Murthy, T.V., Wu, W., Qiu, Q.Q., Shi, Z., LaBaer, J., and Brizuela, L. (2004). Bacterial cell-free system for high-throughput protein expression and a comparative analysis of Escherichia coli cell-free and whole cell expression systems. Protein Expr Purif 36, 217–225.CrossRefPubMedGoogle Scholar
  26. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P., and Fodor, S.P. (1994). Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A 91, 5022–5026.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Predki, P.F. (2004). Functional protein microarrays: ripe for discovery. Curr Opin Chem Biol 8, 8–13.CrossRefPubMedGoogle Scholar
  28. Ramachandran, N., Hainsworth, E., Bhullar, B., Eisenstein, S., Rosen, B., Lau, A.Y., Walter, J.C., and LaBaer, J. (2004). Self-assembling protein microarrays. Science 305, 86–90.CrossRefPubMedGoogle Scholar
  29. Ramachandran, N., Raphael, J.V., Hainsworth, E., Demirkan, G., Fuentes, M.G., Rolfs, A., Hu, Y., and LaBaer, J. (2008a). Nextgeneration high-density self-assembling functional protein arrays. Nat Methods 5, 535–538.PubMedCentralCrossRefPubMedGoogle Scholar
  30. Ramachandran, N., Srivastava, S., and Labaer, J. (2008b). Applications of protein microarrays for biomarker discovery. Proteomics Clin Appl 2, 1444–1459.PubMedCentralCrossRefPubMedGoogle Scholar
  31. Ramani, S.R., Tom, I., Lewin-Koh, N., Wranik, B., Depalatis, L., Zhang, J., Eaton, D., and Gonzalez, L.C. (2012). A secreted protein microarray platform for extracellular protein interaction discovery. Anal Biochem 420, 127–138.CrossRefPubMedGoogle Scholar
  32. Ro, H.S., Jung, S.O., Kho, B.H., Hong, H.P., Lee, J.S., Shin, Y.B., Kim, M.G., and Chung, B.H. (2005). Surface plasmon resonance imaging-based protein array chip system for monitoring a hexahistidine-tagged protein during expression and purification. Appl Environ Microbiol 71, 1089–1092.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Siuti, P., Retterer, S.T., and Doktycz, M.J. (2011). Continuous protein production in nanoporous, picolitre volume containers. Lab Chip 11, 3523–3529.CrossRefPubMedGoogle Scholar
  34. Stevens, R.C. (2000). Design of high-throughput methods of protein production for structural biology. Structure 8, R177–R185.CrossRefPubMedGoogle Scholar
  35. Wang, X., Yu, J., Sreekumar, A., Varambally, S., Shen, R., Giacherio, D., Mehra, R., Montie, J.E., Pienta, K.J., Sanda, M.G., et al. (2005). Autoantibody signatures in prostate cancer. N Engl J Med 353, 1224–1235.CrossRefPubMedGoogle Scholar
  36. Welsh, J.P., Bonomo, J., and Swartz, J.R. (2011). Localization of BiP to translating ribosomes increases soluble accumulation of secreted eukaryotic proteins in an Escherichia coli cell-free system. Biotechnol Bioeng 108, 1739–1748.PubMedCentralCrossRefPubMedGoogle Scholar
  37. Zawada, J.F., Yin, G., Steiner, A.R., Yang, J., Naresh, A., Roy, S.M., Gold, D.S., Heinsohn, H.G., and Murray, C.J. (2011). Microscale to manufacturing scale-up of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnol Bioeng 108, 1570–1578.PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Amita Nand
    • 1
  • Anju Gautam
    • 2
  • Javier Batista Pérez
    • 1
  • Alejandro Merino
    • 1
  • Jinsong Zhu
    • 1
  1. 1.National Center for Nanoscience and TechnologyChinese Academy of SciencesBeijingChina
  2. 2.Institute of MicrobiologyChinese Academy of SciencesBeijingChina

Personalised recommendations