Advertisement

Protein & Cell

, Volume 3, Issue 2, pp 153–159 | Cite as

Overexpression of sigma-1 receptor inhibits ADAM10 and ADAM17 mediated shedding in vitro

  • Juan Li
  • Bin Liu
  • Xiaofei Gao
  • Zhixing Ma
  • Tianyi CaoSong
  • Yan-ai Mei
  • Yufang ZhengEmail author
Research Article

Abstract

The sigma-1 receptor is a molecular chaperone protein highly enriched in the brain. Recent studies linked it to many diseases, such as drug addition, Alzheimer’s disease, stroke, depression, and even cancer. Sigma-1 receptor is enriched in lipid rafts, which are membrane microdomains essential in signaling processes. One of those signaling processes is ADAM17- and ADAM10-dependent ectodomain shedding. By using an alkaline phosphatase tagged substrate reporter system, we have shown that ADAM10-dependent BTC shedding was very sensitive to both membrane lipid component change and sigma-1 receptor agonist DHEAS treatment while ADAM17-dependent HB-EGF shedding was not; and overexpression of sigma-1 receptor diminished ADAM17- and ADAM10-dependent shedding. Our results indicate that sigma-1 receptor plays an important role in modifying the function of transmembrane proteases.

Keywords

sigma-1 receptor ADAM17 ADAM10 shedding lipid raft 

References

  1. Dong, L., Zhu, Y., Dong, Y., Yang, J., Zhao, Y., Qi, Y., Wu, P., Zhu, Y., and Zheng, P. (2009). Neuroactive steroid dehydroepiandrosterone sulfate inhibits 5-hydroxytryptamine (5-HT)-evoked glutamate release via activation of sigma-1 receptors and then inhibition of 5-HT3 receptors in rat prelimbic cortex. J Pharmacol Exp Ther 330, 494–501.CrossRefPubMedGoogle Scholar
  2. Fu, Y., Zhao, Y., Luan, W., Dong, L.Y., Dong, Y., Lai, B., Zhu, Y., and Zheng, P. (2010). Sigma-1 receptors amplify dopamine D1 receptor signaling at presynaptic sites in the prelimbic cortex. Biochim Biophys Acta 1803, 1396–1408.CrossRefPubMedGoogle Scholar
  3. Hanner, M., Moebius, F.F., Flandorfer, A., Knaus, H.G., Striessnig, J., Kempner, E., and Glossmann, H. (1996). Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci U S A 93, 8072–8077.PubMedCentralCrossRefPubMedGoogle Scholar
  4. Harris, B., Pereira, I., and Parkin, E. (2009). Targeting ADAM10 to lipid rafts in neuroblastoma SH-SY5Y cells impairs amyloidogenic processing of the amyloid precursor protein. Brain Res 1296, 203–215.CrossRefPubMedGoogle Scholar
  5. Hayashi, T., and Fujimoto, M. (2010). Detergent-resistant microdomains determine the localization of sigma-1 receptors to the endoplasmic reticulum-mitochondria junction. Mol Pharmacol 77, 517–528.PubMedCentralCrossRefPubMedGoogle Scholar
  6. Hayashi, T., Maurice, T., and Su, T.P. (2000). Ca(2 +) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2 +) concentration. J Pharmacol Exp Ther 293, 788–798.PubMedGoogle Scholar
  7. Hayashi, T., and Su, T.P. (2003). Sigma-1 receptors (sigma(1) binding sites) form raft-like microdomains and target lipid droplets on the endoplasmic reticulum: roles in endoplasmic reticulum lipid compartmentalization and export. J Pharmacol Exp Ther 306, 718–725.CrossRefPubMedGoogle Scholar
  8. Hayashi, T., and Su, T.P. (2005). The potential role of sigma-1 receptors in lipid transport and lipid raft reconstitution in the brain: implication for drug abuse. Life Sci 77, 1612–1624.CrossRefPubMedGoogle Scholar
  9. Hayashi, T., and Su, T.P. (2007). Sigma-1 receptor chaperones at the ER-mitochondrion interface regulate Ca(2 +) signaling and cell survival. Cell 131, 596–610.CrossRefPubMedGoogle Scholar
  10. Hayashi, T., and Su, T.P. (2010). Cholesterol at the endoplasmic reticulum: roles of the sigma-1 receptor chaperone and implications thereof in human diseases. Subcell Biochem 51, 381–398.PubMedCentralCrossRefPubMedGoogle Scholar
  11. Horiuchi, K., Le Gall, S., Schulte, M., Yamaguchi, T., Reiss, K., Murphy, G., Toyama, Y., Hartmann, D., Saftig, P., and Blobel, C.P. (2007). Substrate selectivity of epidermal growth factor-receptor ligand sheddases and their regulation by phorbol esters and calcium influx. Mol Biol Cell 18, 176–188.PubMedCentralCrossRefPubMedGoogle Scholar
  12. Itzhak, Y. (1993). Repeated methamphetamine-treatment alters brain sigma receptors. Eur J Pharmacol 230, 243–244.CrossRefPubMedGoogle Scholar
  13. Kojro, E., Füger, P., Prinzen, C., Kanarek, A.M., Rat, D., Endres, K., Fahrenholz, F., and Postina, R. (2010). Statins and the squalene synthase inhibitor zaragozic acid stimulate the non-amyloidogenic pathway of amyloid-beta protein precursor processing by suppression of cholesterol synthesis. J Alzheimers Dis 20, 1215–1231.PubMedGoogle Scholar
  14. Maurice, T., Grégoire, C., and Espallergues, J. (2006). Neuro(active) steroids actions at the neuromodulatory sigma1 (sigma1) receptor: biochemical and physiological evidences, consequences in neuroprotection. Pharmacol Biochem Behav 84, 581–597.CrossRefPubMedGoogle Scholar
  15. Maurice, T., and Su, T.P. (2009). The pharmacology of sigma-1 receptors. Pharmacol Ther 124, 195–206.PubMedCentralCrossRefPubMedGoogle Scholar
  16. Mei, J., and Pasternak, G.W. (2001). Molecular cloning and pharmacological characterization of the rat sigma1 receptor. Biochem Pharmacol 62, 349–355.CrossRefPubMedGoogle Scholar
  17. Mochizuki, S., and Okada, Y. (2007). ADAMs in cancer cell proliferation and progression. Cancer Sci 98, 621–628.CrossRefPubMedGoogle Scholar
  18. Murai, T., Maruyama, Y., Mio, K., Nishiyama, H., Suga, M., and Sato, C. (2011). Low cholesterol triggers membrane microdomaindependent CD44 shedding and suppresses tumor cell migration. J Biol Chem 286, 1999–2007.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Palmer, C.P., Mahen, R., Schnell, E., Djamgoz, M.B., and Aydar, E. (2007). Sigma-1 receptors bind cholesterol and remodel lipid rafts in breast cancer cell lines. Cancer Res 67, 11166–11175.CrossRefPubMedGoogle Scholar
  20. Parr-Sturgess, C.A., Rushton, D.J., and Parkin, E.T. (2010). Ectodomain shedding of the Notch ligand Jagged1 is mediated by ADAM17, but is not a lipid-raft-associated event. Biochem J 432, 283–294.CrossRefPubMedGoogle Scholar
  21. Pruessmeyer, J., and Ludwig, A. (2009). The good, the bad and the ugly substrates for ADAM10 and ADAM17 in brain pathology, inflammation and cancer. Semin Cell Dev Biol 20, 164–174.CrossRefPubMedGoogle Scholar
  22. Sahin, U., Weskamp, G., Kelly, K., Zhou, H.M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P., and Blobel, C.P. (2004). Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164, 769–779.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Sanderson, M.P., Erickson, S.N., Gough, P.J., Garton, K.J., Wille, P. T., Raines, E.W., Dunbar, A.J., and Dempsey, P.J. (2005). ADAM10 mediates ectodomain shedding of the betacellulin precursor activated by p-aminophenylmercuric acetate and extracellular calcium influx. J Biol Chem 280, 1826–1837.CrossRefPubMedGoogle Scholar
  24. Seth, P., Fei, Y.J., Li, H.W., Huang, W., Leibach, F.H., and Ganapathy, V. (1998). Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem 70, 922–931.CrossRefPubMedGoogle Scholar
  25. Sharkey, J., Glen, K.A., Wolfe, S., and Kuhar, M.J. (1988). Cocaine binding at sigma receptors. Eur J Pharmacol 149, 171–174.CrossRefPubMedGoogle Scholar
  26. Staubach, S., and Hanisch, F.G. (2011). Lipid rafts: signaling and sorting platforms of cells and their roles in cancer. Expert Rev Proteomics 8, 263–277.CrossRefPubMedGoogle Scholar
  27. Su, T.P. (1982). Evidence for sigma opioid receptor: binding of [3H] SKF-10047 to etorphine-inaccessible sites in guinea-pig brain. J Pharmacol Exp Ther 223, 284–290.PubMedGoogle Scholar
  28. Takaguri, A., Shirai, H., Kimura, K., Hinoki, A., Eguchi, K., Carlile-Klusacek, M., Yang, B., Rizzo, V., and Eguchi, S. (2011). Caveolin-1 negatively regulates a metalloprotease-dependent epidermal growth factor receptor transactivation by angiotensin II. J Mol Cell Cardiol 50, 545–551.PubMedCentralCrossRefPubMedGoogle Scholar
  29. Takebayashi, M., Hayashi, T., and Su, T.P. (2004). Sigma-1 receptors potentiate epidermal growth factor signaling towards neuritogenesis in PC12 cells: potential relation to lipid raft reconstitution. Synapse 53, 90–103.CrossRefPubMedGoogle Scholar
  30. Tellier, E., Canault, M., Poggi, M., Bonardo, B., Nicolay, A., Alessi, M. C., Nalbone, G., and Peiretti, F. (2008). HDLs activate ADAM17-dependent shedding. J Cell Physiol 214, 687–693.CrossRefPubMedGoogle Scholar
  31. Tellier, E., Canault, M., Rebsomen, L., Bonardo, B., Juhan-Vague, I., Nalbone, G., and Peiretti, F. (2006). The shedding activity of ADAM17 is sequestered in lipid rafts. Exp Cell Res 312, 3969–3980.CrossRefPubMedGoogle Scholar
  32. Thiel, K.W., and Carpenter, G. (2006). ErbB-4 and TNF-alpha converting enzyme localization to membrane microdomains. Biochem Biophys Res Commun 350, 629–633.PubMedCentralCrossRefPubMedGoogle Scholar
  33. Vilner, B.J., John, C.S., and Bowen, W.D. (1995). Sigma-1 and sigma-2 receptors are expressed in a wide variety of human and rodent tumor cell lines. Cancer Res 55, 408–413.PubMedGoogle Scholar
  34. von Tresckow, B., Kallen, K.J., von Strandmann, E.P., Borchmann, P., Lange, H., Engert, A., and Hansen, H.P. (2004). Depletion of cellular cholesterol and lipid rafts increases shedding of CD30. J Immunol 172, 4324–4331.CrossRefGoogle Scholar
  35. Yoon, S.Y., Roh, D.H., Seo, H.S., Kang, S.Y., Moon, J.Y., Song, S., Beitz, A.J., and Lee, J.H. (2010). An increase in spinal dehydroepiandrosterone sulfate (DHEAS) enhances NMDA-induced pain via phosphorylation of the NR1 subunit in mice: involvement of the sigma-1 receptor. Neuropharmacology 59, 460–467.CrossRefPubMedGoogle Scholar
  36. Zheng, Y., Saftig, P., Hartmann, D., and Blobel, C. (2004). Evaluation of the contribution of different ADAMs to tumor necrosis factor alpha (TNFalpha) shedding and of the function of the TNFalpha ectodomain in ensuring selective stimulated shedding by the TNFalpha convertase (TACE/ADAM17). J Biol Chem 279, 42898–42906.CrossRefPubMedGoogle Scholar
  37. Zheng, Y., Schlondorff, J., and Blobel, C.P. (2002). Evidence for regulation of the tumor necrosis factor alpha-convertase (TACE) by protein-tyrosine phosphatase PTPH1. J Biol Chem 277, 42463–42470.CrossRefPubMedGoogle Scholar
  38. Zimina, E.P., Bruckner-Tuderman, L., and Franzke, C.W. (2005). Shedding of collagen XVII ectodomain depends on plasma membrane microenvironment. J Biol Chem 280, 34019–34024.CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Juan Li
    • 1
  • Bin Liu
    • 1
  • Xiaofei Gao
    • 1
  • Zhixing Ma
    • 1
  • Tianyi CaoSong
    • 1
  • Yan-ai Mei
    • 1
  • Yufang Zheng
    • 1
    Email author
  1. 1.School of Life SciencesFudan UniversityShanghaiChina

Personalised recommendations