Protein & Cell

, Volume 3, Issue 1, pp 17–27 | Cite as

The crosstalk between autophagy and apoptosis: where does this lead?

  • Claire Gordy
  • You-Wen HeEmail author


Recent advances in the understanding of the molecular processes contributing to autophagy have provided insight into the relationship between autophagy and apoptosis. In contrast to the concept of “autophagic cell death,” accumulating evidence suggests that autophagy serves a largely cytoprotective role in physiologically relevant conditions. The cytoprotective function of autophagy is mediated in many circumstances by negative modulation of apoptosis. Apoptotic signaling, in turn, serves to inhibit autophagy. While the mechanisms mediating the complex counter-regulation of apoptosis and autophagy are not yet fully understood, important points of crosstalk include the interactions between Beclin-1 and Bcl-2/Bcl-xL and between FADD and Atg5, caspase- and calpain-mediated cleavage of autophagy-related proteins, and autophagic degradation of caspases. Continued investigation of these and other means of crosstalk between apoptosis and autophagy is necessary to elucidate the mechanisms controlling the balance between survival and death both under normal conditions and in diseases including cancer.


autophagy apoptosis Beclin-1 lymphocytes 


  1. Aita, V.M., Liang, X.H., Murty, V.V., Pincus, D.L., Yu, W., Cayanis, E., Kalachikov, S., Gilliam, T.C., and Levine, B. (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59, 59–65.CrossRefGoogle Scholar
  2. Amaravadi, R.K., Yu, D., Lum, J.J., Bui, T., Christophorou, M.A., Evan, G.I., Thomas-Tikhonenko, A., and Thompson, C.B. (2007). Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 117, 326–336.CrossRefGoogle Scholar
  3. Anglade, P., Vyas, S., Javoy-Agid, F., Herrero, M.T., Michel, P.P., Marquez, J., Mouatt-Prigent, A., Ruberg, M., Hirsch, E.C., and Agid, Y. (1997). Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12, 25–31.Google Scholar
  4. Arsov, I., Adebayo, A., Kucerova-Levisohn, M., Haye, J., MacNeil, M., Papavasiliou, F.N., Yue, Z., and Ortiz, B.D. (2011). A role for autophagic protein beclin 1 early in lymphocyte development. J Immunol 186, 2201–2209.CrossRefGoogle Scholar
  5. Bell, B.D., Leverrier, S., Weist, B.M., Newton, R.H., Arechiga, A.F., Luhrs, K.A., Morrissette, N.S., and Walsh, C.M. (2008). FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc Natl Acad Sci U S A 105, 16677–16682.CrossRefGoogle Scholar
  6. Betin, V.M., and Lane, J.D. (2009). Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J Cell Sci 122, 2554–2566.CrossRefGoogle Scholar
  7. Bhojani, M.S., Rossú, B.D., and Rehemtulla, A. (2003). TRAIL and anti-tumor responses. Cancer Biol Ther 2, S71–S78.CrossRefGoogle Scholar
  8. Bialik, S., and Kimchi, A. (2006). The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75, 189–210.CrossRefGoogle Scholar
  9. Carew, J.S., Nawrocki, S.T., Kahue, C.N., Zhang, H., Yang, C., Chung, L., Houghton, J.A., Huang, P., Giles, F.J., and Cleveland, J. L. (2007). Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Ablmediated drug resistance. Blood 110, 313–322.CrossRefGoogle Scholar
  10. Chang, N.C., Nguyen, M., Germain, M., and Shore, G.C. (2010). Antagonism of Beclin 1-dependent autophagy by BCL-2 at the endoplasmic reticulum requires NAF-1. EMBO J 29, 606–618.CrossRefGoogle Scholar
  11. Cho, D.H., Jo, Y.K., Hwang, J.J., Lee, Y.M., Roh, S.A., and Kim, J.C. (2009). Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett 274, 95–100.CrossRefGoogle Scholar
  12. Ciechomska, I.A., Goemans, C.G., and Tolkovsky, A.M. (2009a). Why doesn’t Beclin 1, a BH3-only protein, suppress the anti-apoptotic function of Bcl-2? Autophagy 5, 880–881.CrossRefGoogle Scholar
  13. Ciechomska, I.A., Goemans, G.C., Skepper, J.N., and Tolkovsky, A. M. (2009b). Bcl-2 complexed with Beclin-1 maintains full antiapoptotic function. Oncogene 28, 2128–2141.CrossRefGoogle Scholar
  14. Debnath, J., Baehrecke, E.H., and Kroemer, G. (2005). Does autophagy contribute to cell death? Autophagy 1, 66–74.CrossRefGoogle Scholar
  15. Feng, W., Huang, S., Wu, H., and Zhang, M. (2007). Molecular basis of Bcl-xL’s target recognition versatility revealed by the structure of Bcl-xL in complex with the BH3 domain of Beclin-1. J Mol Biol 372, 223–235.CrossRefGoogle Scholar
  16. French, L.E., and Tschopp, J. (1999). The TRAIL to selective tumor death. Nat Med 5, 146–147.CrossRefGoogle Scholar
  17. Furuya, N., Yu, J., Byfield, M., Pattingre, S., and Levine, B. (2005). The evolutionarily conserved domain of Beclin 1 is required for Vps34 binding, autophagy and tumor suppressor function. Autophagy 1, 46–52.CrossRefGoogle Scholar
  18. Han, J., Hou, W., Goldstein, L.A., Lu, C., Stolz, D.B., Yin, X.M., and Rabinowich, H. (2008). Involvement of protective autophagy in TRAIL resistance of apoptosis-defective tumor cells. J Biol Chem 283, 19665–19677.CrossRefGoogle Scholar
  19. Han, W., Pan, H., Chen, Y., Sun, J., Wang, Y., Li, J., Ge, W., Feng, L., Lin, X., Wang, X., et al. (2011). EGFR tyrosine kinase inhibitors activate autophagy as a cytoprotective response in human lung cancer cells. PLoS One 6, e18691.CrossRefGoogle Scholar
  20. Herrero-Martín, G., Høyer-Hansen, M., García-García, C., Fumarola, C., Farkas, T., López-Rivas, A., and Jäättelä, M. (2009). TAK1 activates AMPK-dependent cytoprotective autophagy in TRAILtreated epithelial cells. EMBO J 28, 677–685.CrossRefGoogle Scholar
  21. Hou, W., Han, J., Lu, C., Goldstein, L.A., and Rabinowich, H. (2008a). Enhancement of tumor-TRAIL susceptibility by modulation of autophagy. Autophagy 4, 940–943.CrossRefGoogle Scholar
  22. Hou, W., Han, J., Lu, C., Goldstein, L.A., and Rabinowich, H. (2010). Autophagic degradation of active caspase-8: a crosstalk mechanism between autophagy and apoptosis. Autophagy 6, 891–900.CrossRefGoogle Scholar
  23. Hou, Y.C., Chittaranjan, S., Barbosa, S.G., McCall, K., and Gorski, S. M. (2008b). Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 182, 1127–1139.CrossRefGoogle Scholar
  24. Hou, Y.C., Hannigan, A.M., and Gorski, S.M. (2009). An executioner caspase regulates autophagy. Autophagy 5, 530–533.CrossRefGoogle Scholar
  25. Huang, S., and Sinicrope, F.A. (2010). Celecoxib-induced apoptosis is enhanced by ABT-737 and by inhibition of autophagy in human colorectal cancer cells. Autophagy 6, 256–269.CrossRefGoogle Scholar
  26. Kang, R., Livesey, K.M., Zeh, H.J., Loze, M.T., and Tang, D. (2010). HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6, 1209–1211.CrossRefGoogle Scholar
  27. Kihara, A., Kabeya, Y., Ohsumi, Y., and Yoshimori, T. (2001a). Beclinphosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep 2, 330–335.CrossRefGoogle Scholar
  28. Kihara, A., Noda, T., Ishihara, N., and Ohsumi, Y. (2001b). Two distinct Vps34 phosphatidylinositol 3-kinase complexes function in autophagy and carboxypeptidase Y sorting in Saccharomyces cerevisiae. J Cell Biol 152, 519–530.CrossRefGoogle Scholar
  29. Klionsky, D.J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8, 931–937.CrossRefGoogle Scholar
  30. Kovacs, J.R., Li, C., Yang, Q., Li, G., Garcia, I.G., Ju, S., Roodman, D. G., Windle, J.J., Zhang, X., and Lu, B. (2011). Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell death and differentiation. 2011 Jun 10. [Epub ahead of print].Google Scholar
  31. Kroemer, G., and Levine, B. (2008). Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 9, 1004–1010.CrossRefGoogle Scholar
  32. Lee, J.S., Li, Q., Lee, J.Y., Lee, S.H., Jeong, J.H., Lee, H.R., Chang, H., Zhou, F.C., Gao, S.J., Liang, C., et al. (2009). FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol 11, 1355–1362.CrossRefGoogle Scholar
  33. Li, D.D., Wang, L.L., Deng, R., Tang, J., Shen, Y., Guo, J.F., Wang, Y., Xia, L.P., Feng, G.K., Liu, Q.Q., et al. (2009). The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene 28, 886–898.CrossRefGoogle Scholar
  34. Li, H., Wang, P., Sun, Q., Ding, W.X., Yin, X.M., Sobol, R.W., Stolz, D. B., Yu, J., and Zhang, L. (2011). Following cytochrome c release, autophagy is inhibited during chemotherapy-induced apoptosis by caspase 8-mediated cleavage of Beclin 1. Cancer Res 71, 3625–3634.CrossRefGoogle Scholar
  35. Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672–676.CrossRefGoogle Scholar
  36. Liang, X.H., Kleeman, L.K., Jiang, H.H., Gordon, G., Goldman, J.E., Berry, G., Herman, B., and Levine, B. (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72, 8586–8596.Google Scholar
  37. Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567–577.CrossRefGoogle Scholar
  38. Luo, S., and Rubinsztein, D.C. (2007). Atg5 and Bcl-2 provide novel insights into the interplay between apoptosis and autophagy. Cell Death Differ 14, 1247–1250.CrossRefGoogle Scholar
  39. Luo, S., and Rubinsztein, D.C. (2010). Apoptosis blocks Beclin 1-dependent autophagosome synthesis: an effect rescued by Bcl-xL. Cell Death Differ 17, 268–277.CrossRefGoogle Scholar
  40. Maiuri, M.C., Le Toumelin, G., Criollo, A., Rain, J.C., Gautier, F., Juin, P., Tasdemir, E., Pierron, G., Troulinaki, K., Tavernarakis, N., et al. (2007). Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J 26, 2527–2539.CrossRefGoogle Scholar
  41. Martin, D.N., and Baehrecke, E.H. (2004). Caspases function in autophagic programmed cell death in Drosophila. Development 131, 275–284.CrossRefGoogle Scholar
  42. Matsuura, A., Tsukada, M., Wada, Y., and Ohsumi, Y. (1997). Apg1p, a novel protein kinase required for the autophagic process in Saccharomyces cerevisiae. Gene 192, 245–250.CrossRefGoogle Scholar
  43. McLeod, I.X., Zhou, X., Li, Q.J., Wang, F., and He, Y.W. (2011). The Class III Kinase Vps34 Promotes T Lymphocyte Survival through Regulating IL-7Rα Surface Expression. J Immunol 187, 5051–5061.CrossRefGoogle Scholar
  44. Meléndez, A., Tallóczy, Z., Seaman, M., Eskelinen, E.L., Hall, D.H., and Levine, B. (2003). Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301, 1387–1391.Google Scholar
  45. Norman, J.M., Cohen, G.M., and Bampton, E.T. (2010). The in vitro cleavage of the hAtg proteins by cell death proteases. Autophagy 6, 1042–1056.CrossRefGoogle Scholar
  46. Oberstein, A., Jeffrey, P.D., and Shi, Y. (2007). Crystal structure of the Bcl-XL-Beclin 1 peptide complex: Beclin 1 is a novel BH3-only protein. J Biol Chem 282, 13123–13132.CrossRefGoogle Scholar
  47. Ogata, M., Hino, S., Saito, A., Morikawa, K., Kondo, S., Kanemoto, S., Murakami, T., Taniguchi, M., Tanii, I., Yoshinaga, K., et al. (2006). Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26, 9220–9231.CrossRefGoogle Scholar
  48. Otto, G.P., Wu, M.Y., Kazgan, N., Anderson, O.R., and Kessin, R.H. (2004). Dictyostelium macroautophagy mutants vary in the severity of their developmental defects. J Biol Chem 279, 15621–15629.CrossRefGoogle Scholar
  49. Pattingre, S., Tassa, A., Qu, X., Garuti, R., Liang, X.H., Mizushima, N., Packer, M., Schneider, M.D., and Levine, B. (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–939.CrossRefGoogle Scholar
  50. Pua, H.H., Dzhagalov, I., Chuck, M., Mizushima, N., and He, Y.W. (2007). A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204, 25–31.CrossRefGoogle Scholar
  51. Pyo, J.O., Jang, M.H., Kwon, Y.K., Lee, H.J., Jun, J.I., Woo, H.N., Cho, D.H., Choi, B., Lee, H., Kim, J.H., et al. (2005). Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 280, 20722–20729.CrossRefGoogle Scholar
  52. Rohn, T.T., Wirawan, E., Brown, R.J., Harris, J.R., Masliah, E., and Vandenabeele, P. (2011). Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 43, 68–78.CrossRefGoogle Scholar
  53. Tang, D., Kang, R., Livesey, K.M., Cheh, C.W., Farkas, A., Loughran, P., Hoppe, G., Bianchi, M.E., Tracey, K.J., Zeh, H.J. 3rd, et al. (2010). Endogenous HMGB1 regulates autophagy. J Cell Biol 190, 881–892.CrossRefGoogle Scholar
  54. Thome, M., and Tschopp, J. (2001). Regulation of lymphocyte proliferation and death by FLIP. Nat Rev Immunol 1, 50–58.CrossRefGoogle Scholar
  55. Thorburn, J., Moore, F., Rao, A., Barclay, W.W., Thomas, L.R., Grant, K.W., Cramer, S.D., and Thorburn, A. (2005). Selective inactivation of a Fas-associated death domain protein (FADD)-dependent apoptosis and autophagy pathway in immortal epithelial cells. Mol Biol Cell 16, 1189–1199.CrossRefGoogle Scholar
  56. Tsukada, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 333, 169–174.CrossRefGoogle Scholar
  57. Walczak, H., Miller, R.E., Ariail, K., Gliniak, B., Griffith, T.S., Kubin, M., Chin, W., Jones, J., Woodward, A., Le, T., et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5, 157–163.CrossRefGoogle Scholar
  58. Wang, K., Liu, R., Li, J., Mao, J., Lei, Y., Wu, J., Zeng, J., Zhang, T., Wu, H., Chen, L., et al. (2011). Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR- and hypoxia-induced factor 1α-mediated signaling. Autophagy 7, 966–978.CrossRefGoogle Scholar
  59. Wei, Y., Pattingre, S., Sinha, S., Bassik, M., and Levine, B. (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvationinduced autophagy. Mol Cell 30, 678–688.CrossRefGoogle Scholar
  60. Wilson, N.S., Dixit, V., and Ashkenazi, A. (2009). Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat Immunol 10, 348–355.CrossRefGoogle Scholar
  61. Wirawan, E., Vande Walle, L., Kersse, K., Cornelis, S., Claerhout, S., Vanoverberghe, I., Roelandt, R., De Rycke, R., Verspurten, J., Declercq, W., et al. (2010). Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell death & disease 1, e18.CrossRefGoogle Scholar
  62. Wu, H., Wang, M.C., and Bohmann, D. (2009). JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mech Dev 126, 624–637.CrossRefGoogle Scholar
  63. Yang, Z., and Klionsky, D.J. (2010). Eaten alive: a history of macroautophagy. Nat Cell Biol 12, 814–822.CrossRefGoogle Scholar
  64. Youle, R.J., and Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9, 47–59.CrossRefGoogle Scholar
  65. Yousefi, S., Perozzo, R., Schmid, I., Ziemiecki, A., Schaffner, T., Scapozza, L., Brunner, T., and Simon, H.U. (2006). Calpainmediated cleavage of Atg5 switches autophagy to apoptosis. Nat Cell Biol 8, 1124–1132.CrossRefGoogle Scholar
  66. Yu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., Baehrecke, E. H., and Lenardo, M.J. (2004). Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500–1502.CrossRefGoogle Scholar
  67. Zalckvar, E., Berissi, H., Eisenstein, M., and Kimchi, A. (2009a). Phosphorylation of Beclin 1 by DAP-kinase promotes autophagy by weakening its interactions with Bcl-2 and Bcl-XL. Autophagy 5, 720–722.CrossRefGoogle Scholar
  68. Zalckvar, E., Berissi, H., Mizrachy, L., Idelchuk, Y., Koren, I., Eisenstein, M., Sabanay, H., Pinkas-Kramarski, R., and Kimchi, A. (2009b). DAP-kinase-mediated phosphorylation on the BH3 domain of beclin 1 promotes dissociation of beclin 1 from Bcl-XL and induction of autophagy. EMBO Rep 10, 285–292.CrossRefGoogle Scholar
  69. Zhang, N., Hartig, H., Dzhagalov, I., Draper, D., and He, Y.W. (2005). The role of apoptosis in the development and function of T lymphocytes. Cell Res 15, 749–769.CrossRefGoogle Scholar
  70. Zhang, Y., Wu, Y., Cheng, Y., Zhao, Z., Tashiro, S., Onodera, S., and Ikejima, T. (2008). Fas-mediated autophagy requires JNK activation in HeLa cells. Biochem Biophys Res Commun 377, 1205–1210.CrossRefGoogle Scholar
  71. Zhu, Y., Zhao, L., Liu, L., Gao, P., Tian, W., Wang, X., Jin, H., Xu, H., and Chen, Q. (2010). Beclin 1 cleavage by caspase-3 inactivates autophagy and promotes apoptosis. Protein cell 1, 468–477.CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of ImmunologyDuke University Medical CenterDurhamUSA

Personalised recommendations