Protein & Cell

, Volume 2, Issue 10, pp 784–791 | Cite as

Role of plant autophagy in stress response

  • Shaojie Han
  • Bingjie Yu
  • Yan Wang
  • Yule Liu


Autophagy is a conserved pathway for the bulk degradation of cytoplasmic components in all eukaryotes. This process plays a critical role in the adaptation of plants to drastic changing environmental stresses such as starvation, oxidative stress, drought, salt, and pathogen invasion. This paper summarizes the current knowledge about the mechanism and roles of plant autophagy in various plant stress responses.


plant autophagy stress response drought and salt stress pathogen 


  1. Aubert, S., Gout, E., Bligny, R., Marty-Mazars, D., Barrieu, F., Alabouvette, J., Marty, F., and Douce, R. (1996). Ultrastructural and biochemical characterization of autophagy in higher plant cells subjected to carbon deprivation: control by the supply of mitochondria with respiratory substrates. J Cell Biol 133, 1251–1263.CrossRefPubMedGoogle Scholar
  2. Avin-Wittenberg, T., Honig, A., and Galili, G. (2011). Variations on a theme: plant autophagy in comparison to yeast and mammals. Protoplasma 248, 439–446.CrossRefGoogle Scholar
  3. Barth, H., Meiling-Wesse, K., Epple, U.D., and Thumm, M. (2001). Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p. FEBS Lett 508, 23–28.CrossRefPubMedGoogle Scholar
  4. Bassham, D.C., Laporte, M., Marty, F., Moriyasu, Y., Ohsumi, Y., Olsen, L.J., and Yoshimoto, K. (2006). Autophagy in development and stress responses of plants. Autophagy 2, 2–11.CrossRefPubMedGoogle Scholar
  5. Chen, Y., Azad, M.B., and Gibson, S.B. (2009). Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 16, 1040–1052.CrossRefPubMedGoogle Scholar
  6. Chung, T., Suttangkakul, A., and Vierstra, R.D. (2009). The ATG autophagic conjugation system in maize: ATG transcripts and abundance of the ATG8-lipid adduct are regulated by development and nutrient availability. Plant Physiol 149, 220–234.PubMedCentralCrossRefPubMedGoogle Scholar
  7. Hanaoka, H., Noda, T., Shirano, Y., Kato, T., Hayashi, H., Shibata, D., Tabata, S., and Ohsumi, Y. (2002). Leaf senescence and starvation-induced chlorosis are accelerated by the disruption of an Arabidopsis autophagy gene. Plant Physiol 129, 1181–1193.PubMedCentralCrossRefPubMedGoogle Scholar
  8. Hayward, A.P., and Dinesh-Kumar, S.P. (2011). What can plant autophagy do for an innate immune response? Annu Rev Phytopathol 49, 557–576.CrossRefPubMedGoogle Scholar
  9. He, C., and Levine, B. (2010). The Beclin 1 interactome. Curr Opin Cell Biol 22, 140–149.PubMedCentralCrossRefPubMedGoogle Scholar
  10. Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D.I., Petersen, N.H., Mattsson, O., Jørgensen, L.B., Jones, J.D., Mundy, J., and Petersen, M. (2009). Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137, 773–783.CrossRefPubMedGoogle Scholar
  11. Ichimura, Y., Kirisako, T., Takao, T., Satomi, Y., Shimonishi, Y., Ishihara, N., Mizushima, N., Tanida, I., Kominami, E., Ohsumi, M., et al. (2000). A ubiquitin-like system mediates protein lipidation. Nature 408, 488–492.CrossRefPubMedGoogle Scholar
  12. Ishida, H., Yoshimoto, K., Izumi, M., Reisen, D., Yano, Y., Makino, A., Ohsumi, Y., Hanson, M.R., and Mae, T. (2008). Mobilization of rubisco and stroma-localized fluorescent proteins of chloroplasts to the vacuole by an ATG gene-dependent autophagic process. Plant Physiol 148, 142–155.PubMedCentralCrossRefPubMedGoogle Scholar
  13. Kanki, T., Wang, K., Cao, Y., Baba, M., and Klionsky, D.J. (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17, 98–109.PubMedCentralCrossRefPubMedGoogle Scholar
  14. Klionsky, D.J. (2005). The molecular machinery of autophagy: unanswered questions. J Cell Sci 118, 7–18.PubMedCentralCrossRefPubMedGoogle Scholar
  15. Klionsky, D.J. (2007). Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8, 931–937.CrossRefPubMedGoogle Scholar
  16. Klionsky, D.J., Cregg, J.M., Dunn, W.A. Jr, Emr, S.D., Sakai, Y., Sandoval, I.V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M., et al. (2003). A unified nomenclature for yeast autophagy-related genes. Dev Cell 5, 539–545.CrossRefPubMedGoogle Scholar
  17. Klionsky, D.J., and Ohsumi, Y. (1999). Vacuolar import of proteins and organelles from the cytoplasm. Annu Rev Cell Dev Biol 15, 1–32.CrossRefPubMedGoogle Scholar
  18. Kroemer, G., Mariño, G., and Levine, B. (2010). Autophagy and the integrated stress response. Mol Cell 40, 280–293.PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kwon, S.I., Cho, H.J., Jung, J.H., Yoshimoto, K., Shirasu, K., and Park, O.K. (2010). The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J 64, 151–164.PubMedGoogle Scholar
  20. Lai, Z., Wang, F., Zheng, Z., Fan, B., and Chen, Z. (2011). A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J 66, 953–968.CrossRefPubMedGoogle Scholar
  21. Lenz, H.D., Haller, E., Melzer, E., Kober, K., Wurster, K., Stahl, M., Bassham, D.C., Vierstra, R.D., Parker, J.E., Bautor, J., et al. (2011). Autophagy differentially controls plant basal immunity to biotrophic and necrotrophic pathogens. Plant J 66, 818–830.CrossRefPubMedGoogle Scholar
  22. Liu, Y., and Bassham, D.C. (2010). TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One 5, e11883.PubMedCentralCrossRefPubMedGoogle Scholar
  23. Liu, Y., Schiff, M., Czymmek, K., Tallóczy, Z., Levine, B., and Dinesh-Kumar, S.P. (2005). Autophagy regulates programmed cell death during the plant innate immune response. Cell 121, 567–577.CrossRefPubMedGoogle Scholar
  24. Liu, Y., Xiong, Y., and Bassham, D.C. (2009). Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5, 954–963.CrossRefPubMedGoogle Scholar
  25. Meijer, W.H., van der Klei, I.J., Veenhuis, M., and Kiel, J.A. (2007). ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3, 106–116.CrossRefPubMedGoogle Scholar
  26. Menand, B., Desnos, T., Nussaume, L., Berger, F., Bouchez, D., Meyer, C., and Robaglia, C. (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci U S A 99, 6422–6427.PubMedCentralCrossRefPubMedGoogle Scholar
  27. Menzies, F.M., Moreau, K., and Rubinsztein, D.C. (2011). Protein misfolding disorders and macroautophagy. Curr Opin Cell Biol 23, 190–197.PubMedCentralCrossRefPubMedGoogle Scholar
  28. Nakatogawa, H., Suzuki, K., Kamada, Y., and Ohsumi, Y. (2009). Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458–467.CrossRefPubMedGoogle Scholar
  29. Noctor, G., and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49, 249–279.CrossRefPubMedGoogle Scholar
  30. Okamoto, K., Kondo-Okamoto, N., and Ohsumi, Y. (2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17, 87–97.CrossRefPubMedGoogle Scholar
  31. Patel, S., and Dinesh-Kumar, S.P. (2008). Arabidopsis ATG6 is required to limit the pathogen-associated cell death response. Autophagy 4, 20–27.CrossRefPubMedGoogle Scholar
  32. Rose, T.L., Bonneau, L., Der, C., Marty-Mazars, D., and Marty, F. (2006). Starvation-induced expression of autophagy-related genes in Arabidopsis. Biol Cell 98, 53–67.CrossRefPubMedGoogle Scholar
  33. Scherz-Shouval, R., and Elazar, Z. (2011). Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36, 30–38.CrossRefPubMedGoogle Scholar
  34. Scherz-Shouval, R., Shvets, E., Fass, E., Shorer, H., Gil, L., and Elazar, Z. (2007). Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26, 1749–1760.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Seay, M., Hayward, A.P., Tsao, J., and Dinesh-Kumar, S.P. (2009). Something Old, Something New: Plant Innate Immunity and Autophagy. In: Autophagy in Infection and Immunity. Levine B, Yoshimori T, and Deretic V, eds. Berlin Heidelberg: Springer. 287–306.CrossRefGoogle Scholar
  36. Shin, J.H., Yoshimoto, K., Ohsumi, Y., Jeon, J.S., and An, G. (2009). OsATG10b, an autophagosome component, is needed for cell survival against oxidative stresses in rice. Mol Cells 27, 67–74.CrossRefPubMedGoogle Scholar
  37. Slavikova, S., Ufaz, S., Avin-Wittenberg, T., Levanony, H., and Galili, G. (2008). An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J Exp Bot 59, 4029–4043.PubMedCentralCrossRefPubMedGoogle Scholar
  38. Su, W., Ma, H., Liu, C., Wu, J., and Yang, J. (2006). Identification and characterization of two rice autophagy associated genes, OsAtg8 and OsAtg4. Mol Biol Rep 33, 273–278.CrossRefPubMedGoogle Scholar
  39. Thompson, A.R., and Vierstra, R.D. (2005). Autophagic recycling: lessons from yeast help define the process in plants. Curr Opin Plant Biol 8, 165–173.CrossRefPubMedGoogle Scholar
  40. Tsugane, K., Kobayashi, K., Niwa, Y., Ohba, Y., Wada, K., and Kobayashi, H. (1999). A recessive Arabidopsis mutant that grows photoautotrophically under salt stress shows enhanced active oxygen detoxification. Plant Cell 11, 1195–1206.PubMedCentralCrossRefPubMedGoogle Scholar
  41. Wang, Y., Nishimura, M.T., Zhao, T., and Tang, D. (2011a). ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J.Google Scholar
  42. Wang, Y., Wu, Y., and Tang, D. (2011b). The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Signal Behav 6, 1408–1410.PubMedCentralCrossRefPubMedGoogle Scholar
  43. Xia, K., Liu, T., Ouyang, J., Wang, R., Fan, T., and Zhang, M. (2011). Genome-Wide Identification, Classification, and Expression Analysis of Autophagy-Associated Gene Homologues in Rice (Oryza sativa L.). DNA Res.Google Scholar
  44. Xie, Z., and Klionsky, D.J. (2007). Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9, 1102–1109.CrossRefPubMedGoogle Scholar
  45. Xiong, Y., Contento, A.L., and Bassham, D.C. (2007a). Disruption of autophagy results in constitutive oxidative stress in Arabidopsis. Autophagy 3, 257–258.CrossRefPubMedGoogle Scholar
  46. Xiong, Y., Contento, A.L., Nguyen, P.Q., and Bassham, D.C. (2007b). Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143, 291–299.PubMedCentralCrossRefPubMedGoogle Scholar
  47. Yoshimoto, K., Hanaoka, H., Sato, S., Kato, T., Tabata, S., Noda, T., and Ohsumi, Y. (2004). Processing of ATG8s, ubiquitin-like proteins, and their deconjugation by ATG4s are essential for plant autophagy. Plant Cell 16, 2967–2983.PubMedCentralCrossRefPubMedGoogle Scholar
  48. Yoshimoto, K., Jikumaru, Y., Kamiya, Y., Kusano, M., Consonni, C., Panstruga, R., Ohsumi, Y., and Shirasu, K. (2009). Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21, 2914–2927.PubMedCentralCrossRefPubMedGoogle Scholar
  49. Zhu, J.K. (2001). Cell signaling under salt, water and cold stresses. Curr Opin Plant Biol 4, 401–406.CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.MOE Key Laboratory of Bioinformatics, School of Life SciencesTsinghua UniversityBeijingChina

Personalised recommendations